Volume 31 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
Liang Zhishan, Cheng Wei, Yu Yang, et al. Geodetic interface algorithm for evaluating geomagnetic storms in pipelines[J]. High Power Laser and Particle Beams, 2019, 31: 070012. doi: 10.11884/HPLPB201931.190119
Citation: Liang Zhishan, Cheng Wei, Yu Yang, et al. Geodetic interface algorithm for evaluating geomagnetic storms in pipelines[J]. High Power Laser and Particle Beams, 2019, 31: 070012. doi: 10.11884/HPLPB201931.190119

Geodetic interface algorithm for evaluating geomagnetic storms in pipelines

doi: 10.11884/HPLPB201931.190119
  • Received Date: 2019-04-19
  • Rev Recd Date: 2019-06-03
  • Publish Date: 2019-07-15
  • Pipeline corrosion is easily aggravated at the boundary of the earth's electrical structure.The pipeline passing through the earth interface is subject to greater risk of geomagnetic storm disaster at the demarcation point.The algorithm in this paper can be used to evaluate the self-evaluation description of geomagnetic storm disaster risk for oil and gas pipelines.This paper holds that the improved algorithm's Parkinson vector is more accurate than the traditional algorithm's Parkinson vector in locating the geodetic interface.On the premise that the earth's interface can be identified, the azimuth of the improved algorithm's Parkinson vector will change from ±180°to 0°or 0°to±180°near the interface, and the closer to the interface, the azimuth can better reflect the inclination of the earth interface, and the length reaches the minimum value at the boundary point.Factors such as conductivity difference between adjacent plots, the frequency of current sources and the angle between the earth's interface and the line direction will affect the distribution characteristics of the improved algorithm's Parkinson vector.The azimuth map and length map can be used to locate the pipeline through the interface position.There is a virtual interface between adjacent earth's interfaces, which needs analysis and exclusion.The simulation results show that these conclusions are correct and have important guiding significance for pipeline protection.
  • loading
  • [1]
    王琪. 浅谈输气管道安全运行必要性[J]. 化工管理, 2016(11): 9. https://www.cnki.com.cn/Article/CJFDTOTAL-FGGL201611006.htm

    Wang Qi. Talking about the necessity of safe operation of gas transmission pipeline. Chemical Enterprise Management, 2016(11): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-FGGL201611006.htm
    [2]
    Fernberg P A, Samson C, Boteler D H, et al. Earth conductivity structures and their effects on geomagnetic induction in pipelines[J]. Annales Geophysicae, 2007, 25(1): 207-208. doi: 10.5194/angeo-25-207-2007
    [3]
    Shepherd S G, Shubitidze F, Lotko W. Calculating induced electric and magnetic fields near coastal regions[C]//EGS - AGU - EUG Joint Assembly. 2003.
    [4]
    梁志珊. 一种埋地油气管道受地磁暴影响的GIC和PSP的计算方法: CN201510579331. X[P].

    Liang Zhishan. A calculation method of GIC and PSP for buried oil and gas pipeline affected by geomagnetic storm: CN201510579331. X
    [5]
    Parkinson W D. Directions of rapid geomagnetic fluctuations[J]. Geophysical Journal International, 1959, 2(1): 1-14. doi: 10.1111/j.1365-246X.1959.tb05776.x
    [6]
    Parkinson W D. The influence of continents and oceans on geomagnetic variations[J]. Geophysical Journal International, 2010, 6(4): 441-449.
    [7]
    Schmucker U. Anomalies of geomagnetic variations in the southwestern United States[J]. J Geomag Geoelectr, 1963, 15(4): 193-221.
    [8]
    陈伯舫. 渤海西岸的电导率异常[J]. 地球物理学报, 1974(3): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197403004.htm

    Chen Bofang. Conductivity anomaly in west coast of Pohai. Acta Geophysica Sinica, 1974(3): 169-172 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197403004.htm
    [9]
    龚绍京, 刘双庆, 梁明剑. 中国大陆地磁帕金森矢量特征及其与主要构造关系[J]. 地震学报, 2017, 39(1): 47-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201701005.htm

    Gong Shaojing, Liu Shuangqing, Liang Mingjian. Characteristics of geomagnetic Parkinson vector in Chinese mainland and their tevtonic implication. Acta Seismologica Sinica, 2017, 39(1): 47-63 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201701005.htm
    [10]
    Baecher G B, Lanney N A, Einstein H H. Statistical description of rock properties and sampling[C]//The 18th US Symposium on Rock Mechanics(USRMS). 1977: 1-8.
    [11]
    龚绍京. 广东省地磁台的帕金森矢量及广州台的系数在河源地震前后的时间变化[J]. 地震研究, 1987(5): 575-582. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ198705006.htm

    Gong Shaojing. Parkinson vector at the geomagnetic stations in Guangdong province and the time-dependent changes of their ratio at Guangzhou station both before and after the Heyuan earthquake. Journal of Seismological Research, 1987(5): 575-582 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ198705006.htm
    [12]
    中国地震局. 地震及前兆数字观测技术规范-地震观测: 试行[M]. 北京: 地震出版社, 2001.

    China Earthquake Administration. Earthquake and precursor digital observation technical specifications-Earthquake observation: Trial. Beijing: Seismological Press, 2001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (1264) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return