Volume 31 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Yang Hao, Yan Eryan, Zheng Qianglin, et al. Examination research of high power microwave irradiation discharge in near space[J]. High Power Laser and Particle Beams, 2019, 31: 103216. doi: 10.11884/HPLPB201931.190151
Citation: Yang Hao, Yan Eryan, Zheng Qianglin, et al. Examination research of high power microwave irradiation discharge in near space[J]. High Power Laser and Particle Beams, 2019, 31: 103216. doi: 10.11884/HPLPB201931.190151

Examination research of high power microwave irradiation discharge in near space

doi: 10.11884/HPLPB201931.190151
  • Received Date: 2019-05-08
  • Rev Recd Date: 2019-08-15
  • Publish Date: 2019-10-15
  • With the development of high power microwave technology, the threat of strong electromagnetic radiation attacks on electronic devices is becoming more and more serious.Higher requirements are placed on the protection and reinforcement.Near-space vehicles and their discharge effect are less considered currently while lacking the corresponding test environmental conditions.A method of combining the near-space environment with the high power microwave is proposed.Experiment is conducted with strong electromagnetic zone in the cylindrical vacuum tank using the MW-level S-band microwave source and the radiation focusing system.The microwave source is adjustable in repetitive frequency 1-1000 Hz and pulse width 20 ns-20 μs.The atmospheric simulation chamber is adjustable under pressure 10-3-105 Pa and temperature-40 ℃to 60 ℃ with effective volume over 4 m3.The center field intensity measured by small signal transmission is over 2 kV/cm.The experiment technology can be used to carry out the discharge breakdown research of near-space electronic system under high power microwave, which is helpful for the weak link analysis and protection reinforcement.
  • loading
  • [1]
    王胜开, 全寿文, 李淑华, 等. 临近空间和临近空间飞行器[J]. 现代军事, 2008(7): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJI200807010.htm

    Wang Shengkai, Quan Shouwen, Li Shuhua, et al. Near space and near space vehicles. Conmilit, 2008(7): 36-39 https://www.cnki.com.cn/Article/CJFDTOTAL-XDJI200807010.htm
    [2]
    杨澍欣, 李治, 罗超. 美军临近空间武器的作战运用[J]. 长缨, 2017(1): 33-35.

    Yang Miaoxin, Li Zhi, Luo Chao. Operational use of US near space weapons. Changying, 2017(1): 33-35
    [3]
    陈凤贵, 陈光明, 刘克华. 临近空间环境及其影响分析[J]. 装备环境工程, 2013(4): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201304016.htm

    Chen Fenggui, Chen Guangming, Liu Kehua. Near space environment and its impact analysis. Equipment Environmental Engineering, 2013(4): 71-75 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201304016.htm
    [4]
    黄伟, 陈逖, 罗世彬, 等. 临近空间飞行器研究现状分析[J]. 飞航导弹, 2007(10): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD200710010.htm

    Huang Wei, Chen Tie, Luo Shibin, et al. Analysis of the status of near space vehicles. Aerial Missiles, 2007(10): 28-31 https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD200710010.htm
    [5]
    林江川, 陈自东, 陈小群, 等. 高功率微波作用下光电转换器的抗干扰特性分析[J]. 强激光与粒子束, 2018, 30: 013002. doi: 10.11884/HPLPB201830.170158

    Lin Jiangchuan, Chen Zidong, Chen Xiaoqun, et al. Analysis of anti-interference effects for fiber converter under high power microwave radiation. High Power Laser and Particle Beams, 2018, 30: 013002 doi: 10.11884/HPLPB201830.170158
    [6]
    乔登江. 高功率电磁脉冲、强电磁效应、电磁兼容、电磁易损性及评估概论[J]. 现代应用物理, 2013, 4(3): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201303002.htm

    Qiao Dengjiang. Introduction to HPEMP, IEME, EMC, and EM susceptibility and its assessment. Modern Applied Physics, 2013, 4(3): 219-224 https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201303002.htm
    [7]
    余世里. 高功率微波武器效应及防护[J]. 微波学报, 2014, 30(s2): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2014S2042.htm

    Yu Shili. Effect and protection of high power microwave weapons. Journal of Microwaves, 2014, 30(s2): 147-150 https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2014S2042.htm
    [8]
    Xu Gang, Liao Yong, Xie Ping, et al. Frequency-tunable high power mesoband microwave radiator[J]. IEEE Trans Plasma Science, 2011, 39(2): 652-658.
    [9]
    Razavi S F, Rahmat-Samii Y. Resilience to probe-positioning errors in planar phaseless near-field measurements[J]. IEEE Trans Antennas Propag Mag, 2010, 58(8): 2632-2640.
    [10]
    钟龙权, 曹学军, 赵刚, 等. 耦合近场仿真及初步验模测试实验研究[J]. 强激光与粒子束, 2015, 27: 103228. doi: 10.11884/HPLPB201527.103228

    Zhong Longquan, Cao Xuejun, Zhao Gang, et al. Near-field coupling simulation and preliminary validation test. High Power Laser and Particle Beams, 2015, 27: 103228 doi: 10.11884/HPLPB201527.103228
    [11]
    胡海鹰, 刘忠, 杨浩, 等. 微波准光学聚焦系统空间辐射场分布测试[J]. 太赫兹科学与电子信息学报, 2019, 17(2): 274-277. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201902020.htm

    Hu Haiying, Liu Zhong, Yang Hao, et al. Test on space radiation field strongly distributed in microwave quasi-optical focusing system. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(2): 274-277 https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201902020.htm
    [12]
    杨浩, 闫二艳, 郑强林, 等. 一种准光反射聚焦微波放电大气等离子体装置[J]. 强激光与粒子束, 2019, 31: 053002. doi: 10.11884/HPLPB201931.180350

    Yang Hao, Yan Eryan, Zheng Qianglin, et al. A microwave plasma system with quasi optical focusing reflector. High Power Laser and Particle Beams, 2019, 31: 053002 doi: 10.11884/HPLPB201931.180350
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (936) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return