Volume 31 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
Kang Xiaoning, Xu Yini, Zhang Yagang, et al. Power system fault chain simulation model considering effect of geomagnetic storm[J]. High Power Laser and Particle Beams, 2019, 31: 070014. doi: 10.11884/HPLPB201931.190173
Citation: Kang Xiaoning, Xu Yini, Zhang Yagang, et al. Power system fault chain simulation model considering effect of geomagnetic storm[J]. High Power Laser and Particle Beams, 2019, 31: 070014. doi: 10.11884/HPLPB201931.190173

Power system fault chain simulation model considering effect of geomagnetic storm

doi: 10.11884/HPLPB201931.190173
  • Received Date: 2019-05-18
  • Rev Recd Date: 2019-06-15
  • Publish Date: 2019-07-15
  • In the condition of strong magnetic storm, geo-magnetically induced current (GIC) flowing through the neutral point of the transformer, causes the increase of reactive power loss of the transformer.This might lead to overload of the reactive power compensation device, drop of the bus voltage and occurrence of a chain fault, which in turn causes a blackout of the system.Comparing the characteristics of each link in the fault chain and the development law of the power system blackout caused by magnetic storms, the fault chain model is used to simulate the process of power outage under conditions of geomagnetic storm.The article determines the propagation path of cascading failures based on the self-organizing critical theory and the safety margin of non-faulty circuits.Combining the IEEE-RTS 79 system parameters, the geo-location of each bus is estimated.Taking this system as an example and using Power World simulator, the research results verify that the proposed model can reflect the geomagnetic storm parameters against the power system fault chains and the identification of weak links under given grid conditions.The research results can provide a basis for quantifying and preventing disasters in the magnetic storm condition.
  • loading
  • [1]
    刘文颖, 杨楠, 张建立, 等. 计及恶劣天气因素的复杂电网连锁故障事故链模型[J]. 中国电机工程学报, 2012, 32(7): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201207008.htm

    Liu Wen-ying, Yang Nan, Zhang Jianli, et al. Complex grid failure propagating chain model in consideration of adverse weather. Proceedings of the CSEE, 2012, 32(7): 53-59 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201207008.htm
    [2]
    刘连光, 吴伟丽. 磁暴影响电力系统安全风险评估思路与理论框架[J]. 中国电机工程学报, 2014, 34(10): 1583-1591. doi: 10.13334/j.0258-8013.pcsee.2014.10.009

    Liu Lianguang, Wu Weili. Security risk assessment ideas and theoretical framework for power system considering geomagnetic storm. Proceedings of the CSEE, 2014, 34(10): 1583-1591 doi: 10.13334/j.0258-8013.pcsee.2014.10.009
    [3]
    Boteler D H. Geomagnetic hazards to conducting networks[J]. Natural Hazards, 2003, 28(2-3): 537-561.
    [4]
    罗毅, 王英英, 万卫, 等. 电网连锁故障的事故链模型[J]. 电力系统自动化, 2009, 33(24): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT200924002.htm

    Luo Yi, Wang Yingying, Wan Wei, et. al. Fault chains model for cascading failure of grid. Automation of Electric Power Systems, 2009, 33(24): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT200924002.htm
    [5]
    顾雪平, 刘雨濛, 王涛, 等. 基于结构平衡理论的电网自组织临界态辨识[J]. 电工技术学报, 2018, 33(17): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201817022.htm

    Gu Xueping, Liu Yumeng, Wang Tao, et al. Self-organized critical state identification of power systems based on structural equilibrium theory. Transactions of China Electrotechnical Society, 2018, 33(17): 1-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201817022.htm
    [6]
    Zhu Z Q, Wu L J, Xia Z P. An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent-magnet machines[J]. IEEE Trans Magnetics, 2010, 46(4): 1100-1115. doi: 10.1109/TMAG.2009.2038153
    [7]
    何飞, 梅生伟, 薛安成, 等. 基于直流潮流的电力系统停电分布及自组织临界性分析[J]. 电网技术, 2006, 30(14): 7-12. doi: 10.3321/j.issn:1000-3673.2006.14.002

    He Fei, Mei Shengwei, Xue Ancheng, et al. Blackout distribution and self-organized criticality of power system based on DC power flow. Power System Technology, 2006, 30(14): 7-12 doi: 10.3321/j.issn:1000-3673.2006.14.002
    [8]
    岳贤龙, 王涛, 顾雪平, 等. 基于自组织临界理论的电网脆弱线路辨识[J]. 电力系统保护与控制, 2016, 44(15): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201615003.htm

    Yue Xianlong, Wang Tao, Gu Xueping, et al. Vulnerable line identification of power grid based on self-organizing critical theory. Power System Protection and Control, 2016, 44(15): 18-26 https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201615003.htm
    [9]
    Overbye T J, Hutchins T R, Shetye K, et al. Integration of geomagnetic disturbance modeling into the power flow: A methodology for large-scale system studies[C]//IEEE North American Power Symposium. 2012: 1-7.
    [10]
    于群, 郭剑波. 我国电力系统停电事故自组织临界性的研究[J]. 电网技术, 2006, 30(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200606001.htm

    Yu Qun, Guo Jianbo. Study on self-organized criticality of power system blackouts in China. Power System Technology, 2006, 30(6): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200606001.htm
    [11]
    Carreras B A, Lynch V E, Dobson I, et al. Dynamics, criticality and self-organization in a model for blackouts in power transmission systems[C]//IEEE Hawaii International Conference on System Sciences. 2002, 9: 1-9.
    [12]
    吴伟丽. 磁暴诱发电网故障灾害风险分析研究进展[J]. 科学技术与工程, 2016, 16(9): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201609022.htm

    Wu Weili. Review of risk analysis for severe grid accident due to geomagnetic storm. Science Technology and Engineering, 2016, 16(9): 135-141 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201609022.htm
    [13]
    王英英. 基于事故链的电力系统连锁故障风险评估与预防控制研究[D]. 武汉: 华中科技大学, 2010.

    Wang YingYing. Risk assessment and prevention control of cascading failures in power system based on fault chains. Wuhan: Huazhong University of Science & Technology, 2010
    [14]
    宋毅, 王成山. 一种电力系统连锁故障的概率风险评估方法[J]. 中国电机工程学报, 2009, 29(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200904006.htm

    Song Yi, Wang Chengshan. A probabilistic risk assessment method for cascading failure of power system. Proceedings of the CSEE, 2009, 29(4): 27-33 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200904006.htm
    [15]
    刘友波, 胥威汀, 丁理杰, 等. 电力系统连锁故障分析理论与应用(二): 关键特征与研究启示[J]. 电力系统保护与控制, 2013, 41(10): 146-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201310027.htm

    Liu Youbo, Xu Weiting, Ding Lijie, et al. Power system cascading failure analysis theories and application Ⅱ: Key features of real cascading failures and revelation aspects. Power System Protection and Control, 2013, 41(10): 146-155 https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201310027.htm
    [16]
    Dobson I, Chen J, Thorp J S, et al. Examining criticality of blackouts in power system models with cascading events[C]//IEEE Hawaii International Conference on System Sciences. 2002, 10: 1-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article views (1412) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return