Volume 31 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007. doi: 10.11884/HPLPB201931.190184
Citation: Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007. doi: 10.11884/HPLPB201931.190184

Analysis of high-altitude electromagnetic effect models on power system

doi: 10.11884/HPLPB201931.190184
  • Received Date: 2019-05-24
  • Rev Recd Date: 2019-06-15
  • Publish Date: 2019-07-15
  • With the improvement of the intellectualization and overall scale of power grid, modern power system is more and more vulnerable to the threat of high-altitude electromagnetic pulse. Once the key link fails, cascading reactions may occur, resulting in large-scale blackouts. For different electric equipments, their effect modes and threat levels are also different, thus it is necessary to carry out classification research. According to the different effect modes of electric equipments under electromagnetic pulse, this paper divides the equipments into Supervisor Control And Data Acquisition (SCADA) system and relay protection equipment, coil type equipment including transformer and so on, lightning arrestor including line type and equipment type, and other types of equipment. Their effect mechanisms are analyzed in detail. Secondly, considering that there are many kinds of effect levels under the threat of high-altitude electromagnetic pulse, different effect classification methods and multi-level effect evaluation model are introduced. Finally, considering comprehensive impact of vulnerability and importance and the cascading effects among equipment, the fail are links of power system under E1 and E3 are summarized and analyzed, respectively.
  • loading
  • [1]
    Nitsch D, Camp M, Sabath F, et al. Susceptibility of some electronic equipment to HPEM threats[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 380-389. doi: 10.1109/TEMC.2004.831842
    [2]
    Camp M, Gerth H, Garbe H, et al. Predicting the breakdown behavior of microcontrollers under EMP/UWB impact using a statistical analysis[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 368-379. doi: 10.1109/TEMC.2004.831816
    [3]
    Mänsson D, Thottappillil R, Nilsson T, et al. Susceptibility of civilian GPS receivers to electromagnetic radiation[J]. IEEE Trans Electromagn Compat, 2008, 50(2): 434-437. doi: 10.1109/TEMC.2008.921015
    [4]
    Parfenov Y V, Zdoukhov L N, Shurupov A V, et al. Research of flashover of power line insulators due to high-voltage pulses with power ON and power OFF[J]. IEEE Trans Electromagn Compat, 2013, 55(3): 467-474. doi: 10.1109/TEMC.2012.2236094
    [5]
    Foster J S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack: Critical national infrastructures[R]. 2008.
    [6]
    韩军, 谢彦召, 翟爱斌, 等. 静态随机存储器的电磁脉冲效应实验研究[J]. 核电子学与探测技术, 2010, 30(11): 1423-1423. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE201011003.htm

    Han Jun, Xie Yanzhao, Zhai Aibin, et al. Experimental investigation on EMP effect of SRAM. Nuclear Electronics and Detection Technology, 2010, 30(11): 1423-1423 https://www.cnki.com.cn/Article/CJFDTOTAL-HERE201011003.htm
    [7]
    邓建红, 周启明, 赵刚, 等. 近地面1553B通信系统HEMP效应试验[J]. 信息与电子工程, 2010, 8(3): 318-323. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201003018.htm

    Deng Jianhong, Zhou Qiming, Zhao Gang, et al. HEMP effect experiment for surface 1553B communication system. Information and Electronic Engineering, 2010, 8(3): 318-323 https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201003018.htm
    [8]
    高晶, 孙继银, 赵星阳, 等. 电磁脉冲作用下RS232接口受损特性分析[J]. 微电子学与计算机, 2009, 26(4): 252-254. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ200904070.htm

    Gao Jing, Sun Jiyin, Zhao Xingyang, et al. Fault analysis of RS232 interface interfered by the electromagnetic pulse. Microelectronics & Computer, 2009, 26(4): 252-254 https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ200904070.htm
    [9]
    马运普, 陈子铭, 高成. 在HEMP感应过电压作用下10 kV避雷器响应特性的研究[J]. 工程兵工程学院学报, 1996, 11(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201803016.htm

    Ma Yunpu, Chen Ziming, Gao Cheng. Study of the 10kV lightning arresters response under the HEMP induced overvoltage. Journal of Nanjing Engineering Institute, 1996, 11(3): 6-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201803016.htm
    [10]
    Berge J, Varma R K, Marti L. Laboratory validation of the relationship between geomagnetically induced current (GIC) and transformer absorbed reactive power[C]//Electrical Power and Energy Conference. 2011: 491-495.
    [11]
    Takasu N, Oshi T, Miyawaki F, et al. An experimental analysis of DC excitation of transformers by geomagnetically induced currents[J]. IEEE Trans Power Delivery, 1994, 9(4): 1173-1182.
    [12]
    张冰, 刘连光, 肖湘宁. 地磁感应电流对变压器振动、噪声的影响[J]. 高电压技术, 2009(4): 900-904. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200904034.htm

    Zhang Bing, Liu Lianguang, Xiao Xiangning. Effects of geomagnetically induced current on the vibration and noise of transformers. High Voltage Engineering, 2009(4): 900-904 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200904034.htm
    [13]
    Girgis R, Vedante K. Effects of GIC on power transformers and power systems[C]//2012 IEEE Transmission and Distribution Conference and Exposition. 2012: 1-8.
    [14]
    Foster J S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack. Volume 1: Executive report[R]. 2004.
    [15]
    王葵, 孙莹. 电力系统自动化[M]. 北京: 中国电力出版社, 2012.

    Wang Kui, Sun Ying. Power system automation. Beijing: China Electric Power Press, 2012
    [16]
    Florkowski M, Furgal J, Pajak P. Analysis of fast transient voltage distributions in transformer windings under different insulation conditions[J]. IEEE Trans Dielectrics and Electrical Insulation, 2012, 19(6): 1991-1998. doi: 10.1109/TDEI.2012.6396957
    [17]
    Sabath F. Classification of electromagnetic effects at system level[C]//Int Sympon Electromagn Compat. 2008.
    [18]
    LiKejie, Xie Yanzhao, Chen Yuhao, et al. Multinomial regression model for the evaluation of multi-level effects caused by high-power electromagnetic environments[J]. IEEE Trans Electromagn Compat, 2019, 61(1): 149-156.
    [19]
    LiuYu, Han Feng, Wang Jianguo, et al. Vulnerability assessment of a multistate component for IEMI based on a Bayesian method[J]. IEEE Trans Electromagn Compat, 2019, 61(2): 467-475.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views (1681) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return