Volume 32 Issue 1
Dec.  2019
Turn off MathJax
Article Contents
Tao Yudong, Hu Dongxia, Han Wei. Broadband second harmonic generation of spatially chirped pulses[J]. High Power Laser and Particle Beams, 2020, 32: 011022. doi: 10.11884/HPLPB202032.190146
Citation: Tao Yudong, Hu Dongxia, Han Wei. Broadband second harmonic generation of spatially chirped pulses[J]. High Power Laser and Particle Beams, 2020, 32: 011022. doi: 10.11884/HPLPB202032.190146

Broadband second harmonic generation of spatially chirped pulses

doi: 10.11884/HPLPB202032.190146
  • Received Date: 2019-05-06
  • Rev Recd Date: 2019-12-02
  • Publish Date: 2019-12-26
  • Efficient broadband harmonic conversion has important application value in high power laser. However, it is difficult to achieve broad bandwidth and high efficiency at the same time in the traditional second harmonic generation (SHG). This paper proposes a novel broadband SHG scheme, which uses the space-time coupling effect to transform the temporally chirped pulse into a spatially chirped one, and then several spliced crystals are used to achieve efficient broadband frequency conversion. Simulation results show that for the spliced KDP crystal, the conversion efficiency of the fundamental harmonic reaches about 60%, for pulse bandwidth of 30 nm and central wavelength of 1 053 nm. Moreover, the frequency doubled light is still linear and broadband, and can be compressed as the fundamental pulse.
  • loading
  • [1]
    Ed G. Laser physics: extreme light[J]. Nature, 2007, 446(7131): 8-16. doi: 10.1038/446008a
    [2]
    Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015: 5-18.
    [3]
    刘兰琴, 张颖, 王文义, 等. SG-Ⅲ原型装置数十nm宽带数kJ输出能力评估[J]. 强激光与粒子束, 2014, 26:092009. (Liu Lanqin, Zhang Ying, Wang Wenyi, et al. Kilojoule energy output capability evaluation of tens-nm broadband laser in SG-III prototype laser facility[J]. High Power Laser and Particle Beams, 2014, 26: 092009
    [4]
    任广森, 孙全, 吴武明, 等. 径向偏振调制对聚焦光斑匀滑及偏振特性的影响[J]. 强激光与粒子束, 2015, 27:122008. (Ren Guangsen, Sun Quan, Wu Wuming, et al. Effect of radial polarization modulation on smoothing and polarization properties of focal speckle[J]. High Power Laser and Particle Beams, 2015, 27: 122008
    [5]
    Néauport J, Journot E, Gaborit G, et al. Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities[J]. Applied Optics, 2005, 44(16): 3143-3152. doi: 10.1364/AO.44.003143
    [6]
    于淼, 金光勇, 王超. 高峰值功率KDP晶体四倍频266 nm紫外激光器[J]. 强激光与粒子束, 2015, 27:041003. (Yu Miao, Jin Guangyong, Wang Chao. High peak power fourth harmonic 266 nm UV laser using a KDP crystal[J]. High Power Laser and Particle Beams, 2015, 27: 041003
    [7]
    Mero M, Petrov V. High-power, few-cycle, angular dispersion compensated mid-infrared pulses from a noncollinear optical parametric amplifier[J]. IEEE Photonics Journal, 2017, 9(3): 1-8.
    [8]
    Richter T, Schmidt-Langhorst C, Elschner R, et al. Distributed 1-Tb/s all-optical aggregation capacity in 125-GHz optical bandwidth by frequency conversion in fiber[C]//IEEE European Conference on Optical Communication (ECOC). 2015.
    [9]
    Dontsova E I, Vatnik I D, Babin S A, et al. Frequency doubling of Raman fiber lasers with random distributed feedback[J]. Optics Letters, 2016, 41(7): 1439-1442. doi: 10.1364/OL.41.001439
    [10]
    Lanka N R, Patnaik S A, Harjani R A. Frequency-hopped quadrature frequency synthesizer in 0.13-μm technology[J]. IEEE Journal of Solid-State Circuits, 2011, 46(9): 2021-2032. doi: 10.1109/JSSC.2011.2139490
    [11]
    王芳, 李富全, 贾怀庭, 等. 兼容多波长及多脉宽输出的频率转换系统设计[J]. 强激光与粒子束, 2015, 27:032018. (Wang Fang, Li Fuquang, Jia Huaiting, et al. Design of compatible harmonic generation system for multi wavelength and multiple pulse-width laser output[J]. High Power Laser and Particle Beams, 2015, 27: 032018
    [12]
    Zhu H, Wang T, Zheng W, et al. Efficient second harmonic generation of femtosecond laser at 1 μm[J]. Optics Express, 2004, 12(10): 2150-2155. doi: 10.1364/OPEX.12.002150
    [13]
    Kanai T, Zhou X, Sekikawa T, et al. Generation of subterawatt sub-10-fs blue pulses at 1-5 kHz by broadband frequency doubling[J]. Optics Letters, 2003, 28(16): 1484-1486. doi: 10.1364/OL.28.001484
    [14]
    Schmidt B E, Nicolas Thiré, Boivin M, et al. High gain-frequency domain optical parametric amplification (FOPA)[J]. Nature Communications, 2014, 5(5): 3643-3644.
    [15]
    Gruson V, Ernotte G, Lassonde P, et al. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification[J]. Optics Express, 2017, 25(22): 27706. doi: 10.1364/OE.25.027706
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (1219) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return