Volume 32 Issue 3
Feb.  2020
Turn off MathJax
Article Contents
Lu Xicheng, Qiu Yang, Wu Jing, et al. Analysis on nonlinear response of RF filter under ultra wide band pulse environment[J]. High Power Laser and Particle Beams, 2020, 32: 033201. doi: 10.11884/HPLPB202032.190355
Citation: Lu Xicheng, Qiu Yang, Wu Jing, et al. Analysis on nonlinear response of RF filter under ultra wide band pulse environment[J]. High Power Laser and Particle Beams, 2020, 32: 033201. doi: 10.11884/HPLPB202032.190355

Analysis on nonlinear response of RF filter under ultra wide band pulse environment

doi: 10.11884/HPLPB202032.190355
  • Received Date: 2019-09-16
  • Rev Recd Date: 2019-11-25
  • Publish Date: 2020-02-10
  • The experiments reveal, for the RF filter, the out-off-band transfer property under ultra wide band (UWB) pulses is essentially in agreement with that of continous wave (CW). However, for some frequencies in the in-band of the filter, the transfer function of UWB is much larger than 1. Moreover, the oscillating property is found in the time domain response of the filter. Therefore, based on the nonlinear passive intermodulation (PIM) and the Q-value, the response mechanisms of the filter are studied. The PIM of the filter shows nonlinear effects under the two different field strengths, which results in the limited universality of measurement results. Furthermore, the signal through the filter is predicted by making use of the two measured transfer functions. The predicting results under CW pulse are smaller than the measured ones in energy and peak power. In a word the response mechanisms of the filter under UWB pulse does differ from the that under CW pulse, i. e., the measured results of CW can’t be applied for the UWB effect analysis and evaluation.
  • loading
  • [1]
    Lee K S H. EMP interaction: principle, techniques and reference data[M]. New York: Hemisphere, 1986.
    [2]
    Baum C E. From the electromagnetic pulse to high-power electromagnetics[J]. Proceedings of the IEEE, 1992, 80(6): 789-817. doi: 10.1109/5.149443
    [3]
    王建国, 刘国治, 周金山. 微波孔缝线性耦合函数研究[J]. 强激光与粒子束, 2003, 15(11):1093-1099. (Wang Jianguo, Liu Guozhi, Zhou Jinshan. Investigations on function of linear coupling of microwaves into slots[J]. High Power Laser and Particle Beams, 2003, 15(11): 1093-1099
    [4]
    陆希成, 王建国, 刘钰, 等. 基于天线辐射理论构建微波混沌腔的随机耦合模型[J]. 物理学报, 2013, 62:070504. (Lu Xicheng, Wang Jianguo, Liu Yu, et al. Based on antenna theory to establish the random coupling model of microwave chaotic cavities[J]. Acta Physica Sinica, 2013, 62: 070504 doi: 10.7498/aps.62.070504
    [5]
    Electromagnetic compatibility (EMC)—part 5-9: Installation and mitigation guidelines—System-level susceptibility assessments for HEMP and HPEM[S]. IEC 61000-5-9, 2009.
    [6]
    STD-MIL-220. Method of insertion loss measurement[S]. 2004.
    [7]
    Weber T, Krzikalla R, Haseborg J L. Linear and nonlinear filters suppressing UWB pulses[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 423-430. doi: 10.1109/TEMC.2004.831887
    [8]
    王凯. 无线通信系统中的大功率滤波器研究[D]. 合肥: 合肥工业大学, 2009.

    Wang Kai. The study of high-power filters in wireless communication system. Hefei: Hefei University of Technology, 2009
    [9]
    Kodali V P. Engineering electromagnetic compatibility[M]. Beijing: Posts & Telecom Press, 2001.
    [10]
    Henrie J, Christianson A, Chappell W J. Prediction of passive intermodulation from coaxial connectors in microwave networks[J]. IEEE Trans Microwave Theory Tech, 2008, 56(1): 209-216. doi: 10.1109/TMTT.2007.912166
    [11]
    Christianson A, Henrie J J, Chappell W J. Higher order intermodulation product measurement of passive components[J]. IEEE Trans Microwave Theory Tech, 2008, 56(7): 1729-1736. doi: 10.1109/TMTT.2008.925238
    [12]
    叶鸣, 肖怡, 陶长英, 等. 微带传输线的无源互调效应实验研究[J]. 电波科学学报, 2014, 29(3):471-475. (Ye Ming, Xiao Yi, Tao Changying, et al. Experimental research on passive intermodulation effect of microstrip lines[J]. Chinese Journal of Radio Science, 2014, 29(3): 471-475
    [13]
    Wilkerson J R, Lam P G, Grad K G, et al. Distributed passive intermodulation distortion on transmission lines[J]. IEEE Trans Microwave Theory Tech, 2011, 59(5): 1190-1205. doi: 10.1109/TMTT.2011.2106138
    [14]
    毛煜茹, 刘莹, 谢拥军, 等. 金属接触非线性引起的无源互调效应的数值分析[J]. 电子学报, 2015, 43(6):1174-1178. (Mao Yuru, Liu Ying, Xie Yongjun, et al. Numerical analysis of passive intermodulation due to metallic contact nonlinearity[J]. Acta Electronica Sinica, 2015, 43(6): 1174-1178 doi: 10.3969/j.issn.0372-2112.2015.06.020
    [15]
    Henrie J, Christianson A, Chappell W. Linear-nonlinear interaction’s effect on the power dependence of nonlinear distortion products[J]. Appl Phys Lett, 2009, 94: 114101. doi: 10.1063/1.3098068
    [16]
    Henrie J, Christianson A, Chappell W. Linear-nonlinear interaction and passive intermodulation distortion[J]. IEEE Trans Microwave Theory Tech, 2010, 58(5): 1230-1237. doi: 10.1109/TMTT.2010.2045527
    [17]
    邱扬, 王宗良, 田锦, 等. 用新型LC滤波器抑制设备中谐波的研究[J]. 电力电子技术, 2006, 40(1):50-52. (Qiu Yang, Wang Zongliang, Tian Jin, et al. Research on new LC filter in harmonic suppression of equipment[J]. Power Electronics, 2006, 40(1): 50-52 doi: 10.3969/j.issn.1000-100X.2006.01.018
    [18]
    王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010.

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects. Beijing: Atomic Energy Press, 2010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1151) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return