Volume 32 Issue 2
Dec.  2019
Turn off MathJax
Article Contents
Xun Tao, Yang Hanwu, Zhang Jun, et al. Development of high performance, high-current pulsed electron beam sources[J]. High Power Laser and Particle Beams, 2020, 32: 025003. doi: 10.11884/HPLPB202032.190375
Citation: Xun Tao, Yang Hanwu, Zhang Jun, et al. Development of high performance, high-current pulsed electron beam sources[J]. High Power Laser and Particle Beams, 2020, 32: 025003. doi: 10.11884/HPLPB202032.190375

Development of high performance, high-current pulsed electron beam sources

doi: 10.11884/HPLPB202032.190375
  • Received Date: 2019-09-23
  • Rev Recd Date: 2019-12-03
  • Publish Date: 2019-12-26
  • As a core part, the performance of a high-current electron beam source is inevitably essential for high-power sources and accelerators. The attractive features are high-electric field vacuum interface, high quality high current density electron emission, and high peak thermal load collector, which are compatible with high repetition rate operations. This paper presents an optimized ceramic insulation structure with hold-off voltage pulse of 600 kV, 100 ns, and 5 Hz. Mechanisms and surface improvements are developed. Large-scale, well-aligned SiC nano-wires as high-current, pulsed electron beam emitters are explored. They show an superior advantage on cathode lifetime and emission quality. In addition the thermal control and cooling methods for a repetitively operated high current collector are gathered, and the specially designed device can work stably with a heat flux of 1012 W/m2. These efforts make solid contributions to the HPM sources for practical use.
  • loading
  • [1]
    Benford J, Swegle J A, Schamiloglu E. High power microwaes[M]. 3rd ed. London: Taylor & Francis Group, 2015.
    [2]
    Walter J W, Lynn C F, Dickens J C, et al. Operation of a sealed-tube-vircator high-power-microwave source[J]. IEEE Trans Plasma Science, 2012, 40(6): 1618-1621. doi: 10.1109/TPS.2012.2192454
    [3]
    Xun Tao, Yang Hanwu, Zhang Jiande, et. al A ceramic radial insulation structure for a relativistic electron beam vacuum diode[J]. Review of Scientific Instruments, 2008, 79: 063303. doi: 10.1063/1.2936884
    [4]
    Xun Tao, Zhang Jiande, Yang Hanwu, et al. A distributed pumping model for a repetitive operated magnetically insulated transmission line oscillator[J]. Journal of Applied Physics, 2013, 113: 164505. doi: 10.1063/1.4803056
    [5]
    Xun Tao, Fan Yuwei, Yang, Hanwu, et al. A vacuum-sealed, giga-watt class, repetitively pulsed high-power microwave source[J]. Journal of Applied Physics, 2017, 121: 234502. doi: 10.1063/1.4986632
    [6]
    Xun Tao, Zhang Jiande, Yang Han-Wu, et al. Hydrodynamic loading of ceramic components due to pulsed discharge in water[J]. IEEE Trans Plasma Science, 2009, 37(10): 1975-1979. doi: 10.1109/TPS.2009.2016201
    [7]
    Xun Tao, Yang Hanwu, Zhang Jiande. A high-vacuum high-electric-field pulsed power interface based on a ceramic insulator[J]. IEEE Trans Plasma Science, 2015, 43(12): 4130-4135. doi: 10.1109/TPS.2015.2497276
    [8]
    Krasik Y E, Yarmolich D, Gleizer J Z, et al. Pulsed plasma electron sources[J]. Physics of Plasmas, 2009, 16(5): 7103.
    [9]
    Liu Guozhi, Sun Jun, Shao Hao, et al. Research on an improved explosive emission cathode[J]. Journal of Physics D: Applied Phyics, 2009, 42(12): 5204-5209.
    [10]
    Zhang Jun, Jin Zhenxing, Yang Jianhua, et al. Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-bands[J]. IEEE Trans Plasma Science, 2011, 39(6): 1438-1445. doi: 10.1109/TPS.2011.2129536
    [11]
    Shiffler D, Haworth M, Cartwright K, et al. Review of cold cathode research at the Air Force Research Laboratory[J]. IEEE Trans Plasma Science, 2008, 36(3): 718-728. doi: 10.1109/TPS.2008.926227
    [12]
    Levine J S, Harteneck B D. Repetitively pulsed relativistic klystron amplifier[J]. Applied Physics Letter, 1994, 65: 2133-2135. doi: 10.1063/1.112813
    [13]
    Xun Tao, Yang Hanwu, Zhang Jiande, et al. Effects of vacuum pressures on the performance of a velvet cathode under repetitive high-current pulse discharges[J]. Vacuum, 2010, 85: 322-326. doi: 10.1016/j.vacuum.2010.07.004
    [14]
    Xun Tao, Zhang Jiande, Yang Hanwu, et al. Characteristics of a velvet cathode under high repetition rate pulse operation[J]. Physics of Plasmas, 2009, 16: 103106. doi: 10.1063/1.3254043
    [15]
    Xun Tao, Zhao Xuelong, Li Gongyi, et al. High-current, pulsed electron beam sources with SiC nanowire cathodes[J]. Vacuum, 2015, 125: 81-84.
    [16]
    Xun Tao, Zhang Jiande, Li Gongyi, et al. Performance of a SiC-nanowire-based explosive-emission pulsed plasma electron source[J]. Applied Physics Express, 2016, 9: 106001. doi: 10.7567/APEX.9.106001
    [17]
    Friedman M, Myers M C, Chan Y, et al. Properties of ceramic honeycomb cathodes[J]. Applied Physics Letter, 2008, 92: 141501. doi: 10.1063/1.2904637
    [18]
    Dunaevsky A, KrasikYa E, Feisteiner J, et al. Electron diode with a large area ferroelectric plasma cathode[J]. Journal of Applied Physics, 2001, 90(8): 3689-3698. doi: 10.1063/1.1402149
    [19]
    KrasikYa E, Gleizer J Z, Yarmolich D, et al. Characterization of the plasma on dielectric fiber (velvet) cathodes[J]. Journal of Applied Physics, 2005, 98: 093308. doi: 10.1063/1.2126788
    [20]
    梁玉钦, 邵浩, 孙钧, 等. 引导磁场对收集极中电子能量沉积的影响[J]. 强激光与粒子束, 2014, 25:063010. (Liang Yuqin, Shao Hao, Sun Jun, et al. Influence of guiding magnetic field on energy deposition of electrons in collector[J]. High Power Laser and Particle Beams, 2014, 25: 063010
    [21]
    荀涛, 杨汉武, 张自成, 等. 重复频率运行强流电子束收集极热特性[J]. 强激光与粒子束, 2011, 22(11):3064-3068. (Xun Tao, Yang Hanwu, Zhang Zicheng, et al. Thermal characteristics of repetitively operated high-current beam collector[J]. High Power Laser and Particle Beams, 2011, 22(11): 3064-3068
    [22]
    霍少飞, 孙钧, 梁玉钦, 等. 不锈钢电子束收集极的损伤能量密度阈值[J]. 强激光与粒子束, 2014, 26:063008. (Huo Shaofei, Sun Jun, Liang Yuqin, et al. Damage threshold of energy density of stainless steel electron beam collector[J]. High Power Laser and Particle Beams, 2014, 26: 063008
    [23]
    Ju Jinchuan, Fan Yuwei, Zhong Huihuang, et al. An improved X-band magnetically insulated transmission line oscillator[J]. Physics of Plasmas, 2009, 16: 073103. doi: 10.1063/1.3160625
    [24]
    Cai Dan, Liu Lie, Ju Jinchuan, et al. Simulative research on the anode plasma dynamics in the high-power electron beam diode[J]. Physics of Plasmas, 2015, 22: 073108. doi: 10.1063/1.4926580
    [25]
    Mesyats G A. Cathode phenomena in a vacuum discharge: The breakdown, the spark and the Arc[M]. Moscow: Nauka, 2000.
    [26]
    Xun Tao, Yang Hanwu, Zhang Jun, et al. Properties of an intensive relativistic electron beam collector under repetitive pulse operation[J]. IEEE Trans Plasma Science, 2016, 44(6): 957-962. doi: 10.1109/TPS.2016.2556942
    [27]
    Li GongYi, Li Xiaodong, Chen Zhongdao, et al. Large areas of centimeters-long SiC nanowires synthesized by pyrolysis of a polymer precursor by a CVD route[J]. Journal of Physics and Chemistry C, 2009, 113: 17655-17660. doi: 10.1021/jp904277f
    [28]
    Shultis J K, Faw R E. Fundamentals of nuclear science and engineering[M]. New York: Dekker, 2002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (1309) PDF downloads(171) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return