Volume 32 Issue 5
Feb.  2020
Turn off MathJax
Article Contents
Wang Ganping, Li Chunxia, Jin Xiao, et al. Multi-beam diode based on combined magnetic system[J]. High Power Laser and Particle Beams, 2020, 32: 053003. doi: 10.11884/HPLPB202032.190436
Citation: Wang Ganping, Li Chunxia, Jin Xiao, et al. Multi-beam diode based on combined magnetic system[J]. High Power Laser and Particle Beams, 2020, 32: 053003. doi: 10.11884/HPLPB202032.190436

Multi-beam diode based on combined magnetic system

doi: 10.11884/HPLPB202032.190436
  • Received Date: 2019-11-25
  • Rev Recd Date: 2020-02-12
  • Publish Date: 2020-02-10
  • This paper analyses the electron emission from cathode stick and multi-beam cathode rod of MBK and investigates the transport efficiency with different radius and drift tube length. The results show that with compact constructure the electron emission from cathode stick and rod under high voltage affect the multi-beam transmission efficiency obviously. Especially, the beam bombing on the wall of tube will degenerate the repetition capacity of multi-beam klystron. To resolve these problem,  a combined magnetic system is designed and fabricated, which can reduce the stick and rod emission by pulling the multi-beam cathode out of the high electric zone. Then a multi-beam diode with combined magnetic system is designed. Calculation and simulation results show that beam emission from the cathode stick and the rod can be decreased evidently, furthermore the cathode stick can be removed. In addition, the magnetic distribution can ensure high efficiency and stability of multi-beam transport. At present, the multi-beam diode with combined magnetic system is being  experimented.

  • loading
  • [1]
    丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010.

    Ding Yaogen. Design, Manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010
    [2]
    Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. New York: IEEE Press, 2001
    [3]
    Korolyov A N, Gelvich E A, Zhary Y V, et al. Multiple-beam klystron amplifiers: performance parameters and developoment trends[J]. IEEE Trans Plasma Science, 2004, 32(3): 1109-1118. doi: 10.1109/TPS.2004.828807
    [4]
    丁耀根, 阮存军, 沈斌, 等. X波段同轴多腔注速调管的研究[J]. 电子学报, 2006, 34(s1):2337-2341. (Ding Yaogen, Ruan Cunjun, Shen Bin, et al. Study of a X-band coaxial multi beam klystron[J]. Chinese Journal of Electronics, 2006, 34(s1): 2337-2341
    [5]
    刘振帮. X 波段多注相对论速调管放大器的理论与实验研究[D]. 北京: 清华大学, 2012: 7-8. (

    Liu Zhenbang. Theoretical and experimental research on X-band multi-beam relativistic klystron amplifier[D]. Beijng: Tsinghua University, 2012: 7-8
    [6]
    王勇, 丁耀根, 刘濮鲲, 等. 高峰值功率多注速调管的初步研究[J]. 强激光与粒子束, 2005, 17(6):1133-1136. (Wang Yong, Ding Yaogen, Liu Pukun, et al. Preliminary research of high peak power multi-beam klystron[J]. High power Laser and Particle Beams, 2005, 17(6): 1133-1136
    [7]
    Frank K, Ivo T. Three-dimensional simulations of frequency-phase measurements of arbitrary coupled-cavity RF circuits[J]. IEEE Trans Electron Devices, 1988, 35(11): 2018-2026. doi: 10.1109/16.7421
    [8]
    张瑞, 王勇. 高峰值功率多注速调管电子光学系统的研究[J]. 强激光与粒子束, 2006, 18(9):1519-1523. (Zhang Rui, Wang Yong. Electro-optical system in high peak power multi-beam klystron[J]. High power Laser and Particle Beams, 2006, 18(9): 1519-1523
    [9]
    Song L, Ferguson P, Ives R L, et al. Development of an X-Band, 50 MW, multiple beam klystron[C]//The 5th International Vacuum Electronics Conference. 2004: 286-287.
    [10]
    刘振帮, 金晓, 黄华, 等. X波段相对论速调管放大器同轴双间隙输出腔输出特性[J]. 强激光与粒子束, 2011, 23(8):2162-2166. (Liu Zhanbang, Jin Xiao, Huang Hua, et al. Characteristic of X-band coaxial double-gap output cavity of klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(8): 2162-2166 doi: 10.3788/HPLPB20112308.2162
    [11]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Design of an X-band gigawatt multibeam relativistic klystron amplifier[J]. IEEE Trans Plasma Science, 2014, 42(10): 3419-3422. doi: 10.1109/TPS.2014.2354831
    [12]
    Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier[J]. Physics of Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
    [13]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier[J]. Physics of Plasmas, 2016, 23: 093100.
    [14]
    王淦平, 金晓, 黄华, 等. 强流相对论多注电子束在空心圆柱波导中的漂移[J]. 物理学报, 2017, 66:044102. (Wang Ganping, Jin Xiao, Huang Hua, et al. Angular drift of the high current relativistic multi-beam in the hollow cylindrical waveguide[J]. Acta Physica Sinica, 2017, 66: 044102 doi: 10.7498/aps.66.044102
    [15]
    李乐乐, 黄华, 刘振帮, 等. 强流多注电子束高效率引入的模拟研究[J]. 强激光与粒子束, 2016, 28:123003. (Li Lele, Huang Hua, Liu Zhenbang, et al. PIC simulation of high efficient injection of intense relative multi-beam[J]. High Power Laser and Particle Beams, 2016, 28: 123003 doi: 10.11884/HPLPB201628.160434
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1005) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return