Volume 32 Issue 1
Dec.  2019
Turn off MathJax
Article Contents
Chen Chunjuan, Zhao Yuanyuan, Zhao Di, et al. Phase jump in multiphoton resonant harmonic emission driven by strong frequency-comb fields[J]. High Power Laser and Particle Beams, 2020, 32: 011016. doi: 10.11884/HPLPB202032.190453
Citation: Chen Chunjuan, Zhao Yuanyuan, Zhao Di, et al. Phase jump in multiphoton resonant harmonic emission driven by strong frequency-comb fields[J]. High Power Laser and Particle Beams, 2020, 32: 011016. doi: 10.11884/HPLPB202032.190453

Phase jump in multiphoton resonant harmonic emission driven by strong frequency-comb fields

doi: 10.11884/HPLPB202032.190453
  • Received Date: 2019-11-25
  • Rev Recd Date: 2019-12-30
  • Publish Date: 2019-12-26
  • This paper presents a theoretical investigation of the phase jump of multiphoton harmonic emission driven by two frequency-comb fields. The Floquet theorem is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system and frequency-comb fields. Multiple multiphoton-transition paths for the harmonic emission are coherently summed. The phase information about paths can be extracted via the Fourier Transform analysis of the harmonic signals which oscillate as a function of the relative phase between two frequency-comb fields. Phase jumps were observed when harmonic emission was sweeping across the resonance by varying the frequency or intensity of two frequency-comb fields, which allows us to observe the Stark-shifted transition energy of resonant frequency of quantum system driven by strong laser fields.
  • loading
  • [1]
    L’Huillier A, Balcou P. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser[J]. Phys Rev Lett, 1993, 70(6): 774-777. doi: 10.1103/PhysRevLett.70.774
    [2]
    Ravasio A, Gauthier D, Maia F R N C, et al. Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source[J]. Phys Rev Lett, 2009, 103: 028104. doi: 10.1103/PhysRevLett.103.028104
    [3]
    Winterfeldt C, Spielmann C, Gerber G. Colloquium: Optimal control of high-harmonic generation[J]. Rev Mod Phys, 2008, 80: 117. doi: 10.1103/RevModPhys.80.117
    [4]
    Kapteyn H C, Murnane M M, Christov I P. Extreme nonlinear optics: Coherent X rays from lasers[J]. Physics Today, 2005, 58: 39.
    [5]
    Schultze M, Fieß M, Karpowicz N, et al. Delay in photoemission[J]. Science, 2010, 328: 1658. doi: 10.1126/science.1189401
    [6]
    Klünder K, Dahlström J M, Gisselbrecht M, et al. Probing single-photon ionization on the attosecond time scale[J]. Phys Rev Lett, 2011, 106: 143002. doi: 10.1103/PhysRevLett.106.143002
    [7]
    Wang He, Chini M, Chen Shouyuan, et al. Attosecond time-resolved autoionization of argon[J]. Phys Rev Lett, 2010, 105: 143002. doi: 10.1103/PhysRevLett.105.143002
    [8]
    Chini M, Wang Xiaowei, Cheng Yan, et al. Sub-cycle oscillations in virtual states brought to light[J]. Sci Rep, 2013, 3: 1105. doi: 10.1038/srep01105
    [9]
    Chini M, Zhao Baozhen, Wang He, et al. Subcycle ac Stark shift of helium excited states probed with isolated attosecond pulses[J]. Phys Rev Lett, 2012, 109: 073601. doi: 10.1103/PhysRevLett.109.073601
    [10]
    Wu M, Chen S, Gaarde M B, et al. Time-domain perspective on Autler-Townes splitting in attosecond transient absorption of laser-dressed helium atoms[J]. Phys Rev A, 2013, 88: 043416. doi: 10.1103/PhysRevA.88.043416
    [11]
    Li X, Haxton D J, Gaarde M B, et al. Direct extraction of intense-field-induced polarization in the continuum on the attosecond time scale from transient absorption[J]. Phys. Rev. A, 2016, 93: 023401. doi: 10.1103/PhysRevA.93.023401
    [12]
    Chew A, Douguet N, Cariker C, et al. Attosecond transient absorption spectrum of argon at the L2,3 edge[J]. Phys Rev A, 2018, 97: 031407(R). doi: 10.1103/PhysRevA.97.031407
    [13]
    Chen Shaohao, Wu Mengxi, Gaarde M B, et al. Laser-imposed phase in resonant absorption of an isolated attosecond pulse[J]. Phys Rev A, 2013, 88: 033409. doi: 10.1103/PhysRevA.88.033409
    [14]
    Ott C, Kaldun A, Raith P, et al. Lorentz meets Fano in spectral line shapes: A universal phase and its laser control[J]. Science, 2013, 340: 716.
    [15]
    Stooß V, Cavaletto S M, Donsa S, et al. Real-time reconstruction of the strong-field-driven dipole response[J]. Phys Rev Lett, 2018, 121: 173005. doi: 10.1103/PhysRevLett.121.173005
    [16]
    Corkum P B. Plasma perspective on strong-field multiphoton ionization[J]. Phys Rev Lett, 1993, 71: 1994. doi: 10.1103/PhysRevLett.71.1994
    [17]
    Watson J B, Sanpera A, Chen X, et al. Harmonic generation from a coherent superposition of states[J]. Phys Rev A, 1996, 53: R1962. doi: 10.1103/PhysRevA.53.R1962
    [18]
    Sanpera A, Watson J B, Lewenstein M, et al. Harmonic-generation control[J]. Phys Rev A, 1996, 54: 4320. doi: 10.1103/PhysRevA.54.4320
    [19]
    Chen Jing, Zeng Bin, Liu X, et al. Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom[J]. New J. Phys, 2009, 11: 113021. doi: 10.1088/1367-2630/11/11/113021
    [20]
    Ivanov I A, Kheifets A S. Resonant enhancement of generation of harmonics[J]. Phys Rev A, 2008, 78: 053406. doi: 10.1103/PhysRevA.78.053406
    [21]
    Ivanov I A, Kheifets A S. High harmonics generation from excited states of atomic lithium[J]. J Phys B: At Mol Opt Phys, 2008, 41: 115603. doi: 10.1088/0953-4075/41/11/115603
    [22]
    Milošević D B. Theoretical analysis of high-order harmonic generation from a coherent superposition of states[J]. J Opt Soc Am B, 2006, 23: 308. doi: 10.1364/JOSAB.23.000308
    [23]
    Chen Jigen, Wang Ruquang, Zhai Zhen, et al. Frequency-selected enhancement of high-order-harmonic generation by interference of degenerate Rydberg states in a few-cycle laser pulse[J]. Phys Rev A, 2012, 86: 033417. doi: 10.1103/PhysRevA.86.033417
    [24]
    Swoboda M, Fordell T, Klünder K, et al. Phase measurement of resonant two-photon ionization in helium[J]. Phys Rev Lett, 2010, 104: 103003. doi: 10.1103/PhysRevLett.104.103003
    [25]
    Rothhardt J, Hädrich S, Demmler S, et al. Enhancing the macroscopic yield of narrow-band high-order harmonic generation by Fano resonances[J]. Phys Rev Lett, 2014, 112: 233002. doi: 10.1103/PhysRevLett.112.233002
    [26]
    Chini M, Wang Xiaowei, Cheng Yan, et al. Coherent phase-matched VUV generation by field-controlled bound states[J]. Nat. Photon, 2014, 8: 437. doi: 10.1038/nphoton.2014.83
    [27]
    Taïeb R, Véniard V, Wassaf J, et al. Roles of resonances and recollisions in strong-field atomic phenomena[J]. Phys Rev A, 2003, 68: 033403. doi: 10.1103/PhysRevA.68.033403
    [28]
    Ngoko Djiokap J M, Starace A F. Resonant enhancement of the harmonic-generation spectrum of beryllium[J]. Phys Rev A, 2013, 88: 053412. doi: 10.1103/PhysRevA.88.053412
    [29]
    Strelkov V. Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production[J]. Phys Rev Lett, 2010, 104: 123901. doi: 10.1103/PhysRevLett.104.123901
    [30]
    Beaulieu S. Role of excited states in high-order harmonic generation[J]. Phys Rev Lett, 2016, 117: 203001. doi: 10.1103/PhysRevLett.117.203001
    [31]
    Haessler S, Strelkov V, Elouga Bom L B, et al. Phase distortions of attosecond pulses produced by resonance-enhanced high harmonic generation[J]. New J Phys, 2013, 15: 013051. doi: 10.1088/1367-2630/15/1/013051
    [32]
    Ferré A, Boguslavskiy A E, Dagan M, et al. Multi-channel electronic and vibrational dynamics in polyatomic resonant high-order harmonic generation[J]. Nat Commun, 2015, 6: 5952. doi: 10.1038/ncomms6952
    [33]
    Paul P M. Observation of a train of attosecond pulses from high harmonic generation[J]. Science, 2001, 292: 1689. doi: 10.1126/science.1059413
    [34]
    Chu S I, Telnov D A. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields[J]. Phys Rep, 2004, 390: 1. doi: 10.1016/j.physrep.2003.10.001
    [35]
    Ho T S, Chu S I, Tietz J V. Semiclassical many-mode floquet theory[J]. Chem Phys Lett, 1983, 96: 464. doi: 10.1016/0009-2614(83)80732-5
    [36]
    Ho T S, Chu S I. Semiclassical many-mode Floquet theory. II. Nonlinear multiphoton dynamics of a two-level system in a strong bichromatic field[J]. J Phys B, 1984, 17: 2101. doi: 10.1088/0022-3700/17/10/015
    [37]
    Ho T S, Chu S I. Semiclassical many-mode Floquet theory. IV. Coherent population trapping and SU(3) dynamical evolution of dissipative three-level systems in intense bichromatic fields[J]. Phys Rev A, 1985, 32: 377. doi: 10.1103/PhysRevA.32.377
    [38]
    Ho T S, Chu S I. Semiclassical many-mode Floquet theory. III. SU(3) dynamical evolution of three-leve1 systems in intense bichromatic fields[J]. Phys Rev A, 1985, 31: 659. doi: 10.1103/PhysRevA.31.659
    [39]
    Zhao Di, Jiang Chenwei, Li Fuli. Coherent control of multiphoton resonance dynamics in high-order-harmonic generation driven by two frequency-comb fields[J]. Phys Rev A, 2015, 92: 043413. doi: 10.1103/PhysRevA.92.043413
    [40]
    Son S K, Chu S I. Many-mode Floquet theoretical approach for coherent control of multiphoton dynamics driven by intense frequency-comb laser fields[J]. Phys Rev A, 2008, 77: 063406. doi: 10.1103/PhysRevA.77.063406
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views (1331) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return