Volume 32 Issue 5
Feb.  2020
Turn off MathJax
Article Contents
Hu Yun, Zhang Jiyan, Jiang Shaoen, et al. Experiment study of extended X-ray absorption fine structure spectrum on SG-III prototype facility[J]. High Power Laser and Particle Beams, 2020, 32: 052002. doi: 10.11884/HPLPB202032.200022
Citation: Hu Yun, Zhang Jiyan, Jiang Shaoen, et al. Experiment study of extended X-ray absorption fine structure spectrum on SG-III prototype facility[J]. High Power Laser and Particle Beams, 2020, 32: 052002. doi: 10.11884/HPLPB202032.200022

Experiment study of extended X-ray absorption fine structure spectrum on SG-III prototype facility

doi: 10.11884/HPLPB202032.200022
  • Received Date: 2020-01-17
  • Rev Recd Date: 2020-03-30
  • Publish Date: 2020-02-10
  • This article intoduces the principle of extended X-ray absorption fine structure(EXAFS) as parameter diagnostic method on large laser facilities, as well as the experiments on SG-III prototype facility for high quality EXAFS. Using glass ball, CH capsule and Au ball as backlighters, through multi-shots accumulation method, EXAFS of Ti in ambient condition with good signal-to-noise ratio were obtained. The experiment results coincide well with the results of the synchrotron radiation experiment, indicating the correctness and reliability of the experimental design. Analysis of the results show the factors affecting the EXAFS spectrum quality are photon counts, spectral resolution, noise and flaws on apparatuses.

  • loading
  • [1]
    Smith R F, Lorenz K T, Ho D, et al. Graded-density reservoirs for accessing high stress low temperature material states[J]. Astrophysics and Space Science, 2006, 307: 269-272.
    [2]
    Bradley D K, Eggert J H, Smith R F, et al. Diamond at 800 GPa[J]. Physical Review Letters, 2009, 102: 075503. doi: 10.1103/PhysRevLett.102.075503
    [3]
    Wang J, Smith R F, Eggert J H, et al. Ramp compression of iron to 273 GPa[J]. J Appl Phys, 2013, 114: 023513. doi: 10.1063/1.4813091
    [4]
    Eggert J H, Smith R F, Swift D C, et al. Ramp compression of tantalum to 330 GPa[J]. High Pressure Res, 2015, 35: 339-354. doi: 10.1080/08957959.2015.1071361
    [5]
    Zhong J, Li Y, Wang X, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 2010, 6: 984-987. doi: 10.1038/nphys1790
    [6]
    Dong Q L, Wang S J, Lu Q M, et al. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction[J]. Phys Rev Lett, 2012, 108: 215001. doi: 10.1103/PhysRevLett.108.215001
    [7]
    Yaakobi B, Marshall F J, Boehly T R, et al. Extended X-ray absorption fine-structure experiments with a laser-imploded target as a radiation source[J]. Journal of the Optical Society of America B-Optical Physics, 2003, 20: 238-245. doi: 10.1364/JOSAB.20.000238
    [8]
    Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti[J]. Physical Review Letters, 2004, 92: 095504.
    [9]
    Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser shocks in Ti and V and phase transformation in Ti[J]. Physics of Plasmas, 2004, 11: 2688-2695. doi: 10.1063/1.1646673
    [10]
    Yaakobi B, Boehly T R, Meyerhofer D D, et al. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks[J]. Physical Review Letters, 2005, 95: 075501.
    [11]
    Yaakobi B, Boehly T R, Meyerhofer D D, et al. Extended X-ray absorption fine structure measurement of phase transformation in iron shocked by nanosecond laser[J]. Physics of Plasmas, 2005, 12: 092703.
    [12]
    Yaakobi B, Boehly T R, Sangster T C, et al. Extended X-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser[J]. Physics of Plasmas, 2008, 15: 062703.
    [13]
    Ping Y, Coppari F, Hicks D G, et al. Solid iron compressed up to 560 GPa[J]. Phys Rev Lett, 2013, 111: 065501. doi: 10.1103/PhysRevLett.111.065501
    [14]
    Coppari F, Thorn D B, Kemp G E, et al. X-ray source development for EXAFS measurements on the National Ignition Facility[J]. The Review of Scientific Instruments, 2017, 88: 083907. doi: 10.1063/1.4999649
    [15]
    Xue Q X, Wang Z B, Jiang S E, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 2014, 21: 072709. doi: 10.1063/1.4890851
    [16]
    Xue Q X, Wang Z B, Jiang S E, et al. Characteristic method for isentropic compression simulation[J]. Aip Adv, 2014, 4: 057127. doi: 10.1063/1.4880039
    [17]
    Teo B K. EXAFS basic principles and data-analysis [M]. Berlin Heidelberg: Springer, 1986.
    [18]
    Sevillano E, Meuth H, Rehr J J. Extended X-ray absorption fine structure Debye-Waller factors. I. Monatomic crystals[J]. Physical Review B, 1979, 20: 4908-4911. doi: 10.1103/PhysRevB.20.4908
    [19]
    More R M, Warren K H, Young D A, et al. A new quotidian equation of state (QEOS) for hot dense matter[J]. Phys Fluids, 1988, 31: 3059-3078. doi: 10.1063/1.866963
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (1400) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return