Volume 32 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Long Fengqiong, Zheng Shijie, Li Wei, et al. Astigmatic characteristics of linearly polarized phase vortex beam[J]. High Power Laser and Particle Beams, 2020, 32: 081005. doi: 10.11884/HPLPB202032.200025
Citation: Long Fengqiong, Zheng Shijie, Li Wei, et al. Astigmatic characteristics of linearly polarized phase vortex beam[J]. High Power Laser and Particle Beams, 2020, 32: 081005. doi: 10.11884/HPLPB202032.200025

Astigmatic characteristics of linearly polarized phase vortex beam

doi: 10.11884/HPLPB202032.200025
  • Received Date: 2020-05-06
  • Rev Recd Date: 2020-07-15
  • Publish Date: 2020-08-13
  • The linearly polarized phase vortex beam has a unique spiral phase distribution and central singularity. The topological charge of the vortex beam can be integral and fractional. The integral vortex beam has a ring light intensity distribution with dark spots in the center, while the fractional vortex beam has a unique radial gap, which belongs to the non-rotational symmetric beam and has astigmatic characteristics. In this paper, the astigmatism coefficient is proposed to characterize the astigmatism characteristics of vortex beam. A linearly polarized phase vortex beam is generated by using a spiral phase plate. Its beam quality and astigmatism characteristics are measured. The propagation characteristics and beam quality of vortex beam with different topological charge is numerically simulated, and the astigmatism coefficient changing with topological charge is analyzed. The results indicate that when the topological charge is integer, the beam has no astigmatism and the astigmatism coefficient is zero; when the topological charge is semi-odd, the astigmatism characteristic of the beam is obvious, and the astigmatism coefficient reaches the maximum; as the integral part of topological charge increased, the maximum value of astigmatism coefficient decreases.
  • loading
  • [1]
    Soskin M S, Gorshkov V N, Vasnetsov M V, et al. Topological charge and angular momentum of light beams carrying optical vortices[J]. Physical Review A, 1997, 56(5): 4064-4975. doi: 10.1103/PhysRevA.56.4064
    [2]
    Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [3]
    Jović Savić D, Piper A, Žikić R, et al. Vortex solitons at the interface separating square and hexagonal lattices[J]. Physics Letters A, 2015, 379(16/17): 1110-1113.
    [4]
    Gahagan K T, Swartzlander G A. Optical vortex trapping of particles[J]. Optics Letters, 1996, 21(11): 827-829. doi: 10.1364/OL.21.000827
    [5]
    Khonina S N, Kotlyar V V, Shinkaryev M V, et al. The phase rotor filter[J]. Journal of Modern Optics, 1992, 39(5): 1147-1154. doi: 10.1080/09500349214551151
    [6]
    Curtis J E, Grier D G. Modulated optical vortices[J]. Optics Letters, 2003, 28(11): 872-874. doi: 10.1364/OL.28.000872
    [7]
    Arlt J, Dholakia K, Allen L, et al. The production of multiringed Laguerre-Gaussian modes by computer-generated holograms[J]. Journal of Modern Optics, 1998, 45(6): 1231-1237. doi: 10.1080/09500349808230913
    [8]
    Götte J B, O’Holleran K, Preece D, et al. Light beams with fractional orbital angular momentum and their vortex structure[J]. Optics Express, 2008, 16(2): 993. doi: 10.1364/OE.16.000993
    [9]
    Ndagano B, Sroor H, McLaren M, et al. Beam quality measure for vector beams[J]. Optics Letters, 2016, 41(2): 3407.
    [10]
    Szatkowski M M, Popiolek-Masajada A, Masajada J. Beam-quality measurement through off-axis optical vortex[C]//Proc of SPIE. 2019: 1110703.
    [11]
    Wen Jisen, Wang Ligang, Yang Xihua, et al. Vortex strength and beam propagation factor of fractional vortex beams[J]. Optics Express, 2019, 27(4): 5893. doi: 10.1364/OE.27.005893
    [12]
    Siegman A E. New developments in laser resonators[C]//Proc of SPIE. 1990, 1224: 2-14.
    [13]
    GB/T 32831-2016, 高能激光光束质量评价与测试方法[S].

    GB/T 32831-2016, Evaluation and test methods for beam quality of high energy laser[S]
    [14]
    冯国英, 周寿桓. 激光束的强度矩描述[M]. 北京: 国防工业出版社, 2016.

    Feng Guoying, Zhou Shouhuan. Intensity moment of laser beam[M]. Beijing: National Defense Industry Press, 2016
    [15]
    冯国英, 周寿桓, 高春清. 激光模场及光束质量表征[M]. 北京: 国防工业出版社, 2016.

    Feng Guoying, Zhou Shouhuan, Gao Chunqing. Laser mode field and beam quality characterization[M]. Beijing: National Defense Industry Press, 2016
    [16]
    刘晓丽, 冯国英, 李玮, 等. 像散椭圆高斯光束的因子矩阵的理论与实验研究[J]. 物理学报, 2013, 62:194202. (Liu Xiaoli, Feng Guoying, Li Wei, et al. Theoretical and experimental study on M2 factor matrix for astigmatic elliptical Gaussian beam[J]. Aacta Physica Sinica, 2013, 62: 194202 doi: 10.7498/aps.62.194202
    [17]
    Ke Y, Zeng C, Xie P, et al. Measurement system with high accuracy for laser beam quality[J]. Applied Optics, 2015, 54(15): 4876-4880. doi: 10.1364/AO.54.004876
    [18]
    Weber H. Propagation of higher-order intensity moments in quadratic-index media[J]. Optical and Quantum Electronics, 1992, 24(9): S1027-S1049. doi: 10.1007/BF01588604
    [19]
    Siegman A E. How to (maybe) measure laser beam quality[J]. Optical Society of America Trends in Optics and Photonics Series, 1998, 17(2): l84-199.
    [20]
    2018SR399207-2018, 光束质量M矩阵分析软件V1.0[S].

    2018SR399207-2018, Beam quality M matrix analysis software V1.0[S]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1166) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return