Volume 32 Issue 6
May  2020
Turn off MathJax
Article Contents
Guo Huaiwen, Zhou Wei, Ye Lang, et al. Effect of crystals’ surface shape distortion on conversion efficiency of third harmonic generation[J]. High Power Laser and Particle Beams, 2020, 32: 061002. doi: 10.11884/HPLPB202032.200046
Citation: Guo Huaiwen, Zhou Wei, Ye Lang, et al. Effect of crystals’ surface shape distortion on conversion efficiency of third harmonic generation[J]. High Power Laser and Particle Beams, 2020, 32: 061002. doi: 10.11884/HPLPB202032.200046

Effect of crystals’ surface shape distortion on conversion efficiency of third harmonic generation

doi: 10.11884/HPLPB202032.200046
  • Received Date: 2020-02-25
  • Rev Recd Date: 2020-04-19
  • Publish Date: 2020-05-12
  • In the field of inertial confinement fusion (ICF), UV laser can effectively improve the beam-target coupling efficiency and suppress the hydrodynamic instability of laser plasma interaction. Using large aperture KDP crystal or KD*P crystal to triple the frequency of laser created by high power solid-state laser facility (wavelength is 1 μm) is an effective way to obtain high power UV laser output. At present, most high power laser facilities take method of I/II type third harmonic generation. The phase matching condition is required in the third harmonic generation, and the conversion efficiency is easily influenced by the detuned angle of crystals. The quality of the return light spot of crystals’ surface can reflect the state of wavefront distortion, and then evaluate the degree of angle-detuning at the crystal. The factors which create detuned angle are analyzed and judged, within which the surface shape distortion of crystals (PV is more than 30 μm) caused by clamping and gravity is the main part. According to improving the surface shape of crystals (PV is less than 10 μm) in the experiment, the quality of the return light spot of crystals has been significantly improved, and then the conversion efficiency of third harmonic generation has an obvious increase.
  • loading
  • [1]
    杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学: 物理学力学天文学, 2018, 48:065203. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2018, 48: 065203
    [2]
    Miller G H, Moses E I, Wuest C R. The National Ignition Facility[J]. Optical Engineering, 2004, 43(12): 2841-2853. doi: 10.1117/1.1814767
    [3]
    Miquel J L, Lion C, Vivini P. The Laser Mega-Joule: LMJ & PETAL status and program overview[C]//Journal of Physics: Conference Series, 2016, 688: 012067.
    [4]
    He X T, Zhang W Y. Inertial fusion research in China[J]. The European Physical Journal D, 2007, 44: 227-231. doi: 10.1140/epjd/e2007-00005-1
    [5]
    李玮, 冯国英, 李刚, 等. 二倍频晶体温升分布对输出光场分布的影响[J]. 强激光与粒子束, 2009, 21(12):1810-1814. (Li Wei, Feng Guoying, Li Gang, et al. Influence of temperature rise distribution in second harmonic generation crystal on intensity distributions of output second harmonic wave[J]. High Power Laser and Particle Beams, 2009, 21(12): 1810-1814
    [6]
    赵润昌, 李平, 李海, 等. 晶体角度跟随三倍频效率控制技术[J]. 强激光与粒子束, 2014, 26:102007. (Zhao Runchang, Li Ping, Li Hai, et al. Third harmonic efficiency control with crystal angular following[J]. High Power Laser and Particle Beams, 2014, 26: 102007 doi: 10.11884/HPLPB201426.102007
    [7]
    韩伟, 郑万国, 曾小明, 等. 折返点匹配的宽带二倍频实验研究[J]. 中国激光, 2006, 33(1):31-33. (Han Wei, Zheng Wanguo, Zeng Xiaoming, et al. Experimental study of the broadband frequency doubling at the retracing point of phase-matching[J]. Chinese Journal of Lasers, 2006, 33(1): 31-33 doi: 10.3321/j.issn:0258-7025.2006.01.008
    [8]
    王芳, 粟敬钦, 李恪宇, 等. KDP晶体折射率不均匀性对三倍频转换效率的影响[J]. 强激光与粒子束, 2007, 19(5):746-749. (Wang Fang, Su Jingqin, Li Keyu, et al. Influence of KDP crystals’ refractive-index non-uniformities on 3ω conversion efficiency[J]. High Power Laser and Particle Beams, 2007, 19(5): 746-749
    [9]
    秘国江, 蔡邦维, 杨春林, 等. 用于ICF驱动器高效三倍频方案的分析[J]. 激光技术, 1999, 23(5):304-308. (Bi Guojiang, Cai Bangwei, Yang Chunlin, et al. The analysis of the third harmonic generation schemes for ICF drivers[J]. Laser Technology, 1999, 23(5): 304-308 doi: 10.3969/j.issn.1001-3806.1999.05.010
    [10]
    王圣来, 丁建旭. KDP晶体的研究进展[J]. 人工晶体学报, 2012, 41:179-188. (Wang Shenglai, Ding Jianxu. Research progress of KDP crystal[J]. Journal of Synthetic Crystals, 2012, 41: 179-188
    [11]
    Auerbach J M, Milam D, Barker C E, et al. Frequency conversion modeling[R]. UCRL-LR-105821-9604, 1996.
    [12]
    Lubin O, Gouedard C. Modeling of the effects of KDP crystals gravity sag on third harmonic generation[C]//Proc of SPIE. 1999, 3492: 802-808.
    [13]
    张洋, 熊召, 徐旭, 等. KDP晶体杠杆式夹持方案分析[J]. 光学与光电技术, 2014, 12(4):7-11. (Zhang Yang, Xiong Zhao, Xu Xu, et al. Analysis of lever-type clamping method for KDP crystals[J]. Optics and Optoelectronic Technology, 2014, 12(4): 7-11
    [14]
    曹庭分, 熊召, 徐旭, 等. 大口径KDP晶体夹持方式对面形的影响[J]. 激光与光电子学进展, 2011, 48:081404. (Cao Tingfen, Xiong Zhao, Xu Xu, et al. Mounting ways and surface figure of large-aperture KDP crystal[J]. Laser and Optoelectronics Programs, 2011, 48: 081404 doi: 10.3788/LOP48.081404
    [15]
    贾凯, 袁晓东, 徐旭, 等. 夹持方式对KDP晶体三倍频转换效率的影响[J]. 强激光与粒子束, 2011, 23(6):1553-1558. (Jia Kai, Yuan Xiaodong, Xu Xu, et al. Influence of clamping modes in KDP crystal on conversion efficiency of third harmonic generation[J]. High Power Laser and Particle Beams, 2011, 23(6): 1553-1558 doi: 10.3788/HPLPB20112306.1553
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (1327) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return