Volume 32 Issue 10
Sep.  2020
Turn off MathJax
Article Contents
Huang Hua, Chen Zhaofu, Yuan Huan, et al. Research on stability of repetitive operation of S-band, long-pulse relativistic klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103002. doi: 10.11884/HPLPB202032.200167
Citation: Huang Hua, Chen Zhaofu, Yuan Huan, et al. Research on stability of repetitive operation of S-band, long-pulse relativistic klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103002. doi: 10.11884/HPLPB202032.200167

Research on stability of repetitive operation of S-band, long-pulse relativistic klystron

doi: 10.11884/HPLPB202032.200167
  • Received Date: 2020-06-16
  • Rev Recd Date: 2020-08-18
  • Publish Date: 2020-09-29
  • To improve the stability of frequency and phase of the output microwave on condition of repetitive operation, an S-band, long-pulse relativistic klystron amplifier (RKA) is investigated by theoretical modeling, numerical simulation and experimental measurement. Description and analysis are made on the physical origins of self-oscillation, output microwave pulse shortening, the instability in the repetitive operation and the phase fluctuation of output microwave in the RKA. Measures are taken to solve or alleviate these problems, which are demonstrated by the simulation and experiment. It is confirmed that the electrons reflected from the gaps of idler cavity and output cavity of RKA result in the self-oscillation and the output microwave pulse shortening, and the electron dispersion and bombardment on the noses of the output cavity and idler cavity affect the stability of repetitive operation. It is validated that enlarging the drifting tube radius, adding some microwave absorber in the drifting tube between those cavities and optimizing the structure of the input cavity, output cavity and collector of the electron beams can alleviate the problem of self-oscillation and pulse shortening obviously and improve the stability of repetitive operation and phase fluctuation of output microwave. Using an 830 kV, 7.7 kA, 190 ns electron beam and an input microwave of 80 kW, an output power of 1.55 GW, pulse width of 163 ns, and phase fluctuation of 18° are generated by the S-band three-cavity RKA operating at 25 Hz.
  • loading
  • [1]
    Barker R J, Schamiloglu E. High-power microwave sources and technologies [M]. New York: IEEE Press, 2001.
    [2]
    Benford J, Swegle J A, Schamiloglu E. High power microwaves [M]. 3rd ed. Artech House: CRC Press, 2016.
    [3]
    周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007.

    Zhou Chuanming, Liu guozhi, Liu yonggui, et al. High-power microwave source[M]. Beijing: Atomic Energy Press, 2007
    [4]
    Friedman M, Fernsler R, Slinker S, et al. Efficient conversion of the energy of IREBs into rf waves[J]. Phys Rev Lett, 1995, 75: 1214-1217. doi: 10.1103/PhysRevLett.75.1214
    [5]
    Fazio M V, Haynes W B, Carlsten B E, et al. A 500 MW, 1 μs pulse length, high current relativistic klystron[J]. IEEE Trans Plasma Sci, 1994, 22(3): 740-749.
    [6]
    Levine J S, Harteneck B D. Repetitively pulsed relativistic klystron amplifier[J]. Appl Phys Lett, 1994, 65(17): 2133-2135. doi: 10.1063/1.112813
    [7]
    Huang Hua, Feng Dichao, Luo Guangyao, et al. Repetitive operation of an S-band, 1 GW relativistic klystron amplifier[J]. IEEE Trans Plasma Sci, 2007, 35(3): 384-387.
    [8]
    Wang Pingshan, Lei Fangyan, Huang Hua, et al. Generation of intense microwaves from a two-cavity image charge focusing relativistic klystron amplifier[J]. Phys Rev Lett, 1998, 80(20): 4594-4597. doi: 10.1103/PhysRevLett.80.4594
    [9]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multi-beam relativistic klystron amplifier[J]. IEEE Trans Electron Devices, 2019, 66(1): 722-728. doi: 10.1109/TED.2018.2879193
    [10]
    Qi Zumin, Zhang Jun, Zhang Qiang, et al. Design and experimental demonstration of a long-pulse, X-band triaxial klystron amplifier with an asymmetric input cavity[J]. IEEE Electron Device Lett, 2016, 37(6): 782-784.
    [11]
    Xiao Renzhen, Chen Changhua, Deng Yuqun, et al. A high-gain X-band overmoded relativistic klystron[J]. IEEE Trans Electron Devices, 2018, 65(1): 263-269. doi: 10.1109/TED.2017.2771946
    [12]
    Wu Yang, Xu Zhou, Jin Xiao, et al. Suppression of higher mode excitation in a high gain relativistic klystron amplifier[J]. Phys Plasmas, 2012, 19: 023102. doi: 10.1063/1.3680622
    [13]
    Li Shifeng, Duan Zhaoyun, Huang Hua, et al. Extended interaction oversized coaxial relativistic klystron amplifier with gigawatt-level output at Ka band[J]. Phys Plasmas, 2018, 25: 043116. doi: 10.1063/1.5006417
    [14]
    Friedman M, Serlin V, Krall J, et al. Relativistic klystron amplifier I: High power operation[C]//Proc of SPIE. 1991, 1407: 2-7.
    [15]
    黄华, 罗雄, 雷禄容, 等. 相对论速调官放大器杂频振荡的分析与抑制[J]. 电子学报, 2010, 38(7):1-7. (Huang Hua, Luo Xiong, Lei Lurong, et al. Analysis and suppress of multi-frequency oscillation on long pulse relativistic klystron amplifiers[J]. Acta Electronica Sinica, 2010, 38(7): 1-7
    [16]
    Zhang Zehai. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier[J]. Review of Scientific Instruments, 2015, 86: 034707. doi: 10.1063/1.4914832
    [17]
    陈昭福, 黄华, 许州, 等. S波段长脉冲RKA脉冲缩短的抑制[J]. 物理学报, 2014, 63:238402. (Chen Zhaofu, Huang Hua, Xu Zhou, et al. Suppress of pulse shortening on S-band long pulse RKA[J]. Acta Physica Sinica, 2014, 63: 238402
    [18]
    Huang Hua, Chen Zhaofu, Li Shifeng, et al. Investigation on pulse shortening of S-band, long pulse, four cavities high power relativistic klystron amplifier[J]. Phys Plasmas, 2019, 26: 033107. doi: 10.1063/1.5086734
    [19]
    Calstern B E, Faehl R J, Fazio M V, et al. Intense space-charge beam physics relativistic klystron amplifier[J]. IEEE Trans Plasma Sci, 1994, 22(5): 719-729. doi: 10.1109/27.338288
    [20]
    黄华. S波段长脉冲RKA的理论与实验研究[D]. 北京: 中国工程物理研究院研究生部, 2006.

    Huang Hua. Theory and experimental investigation on S band long pulse RKA [D]. Beijing: Graduate School, China Academy Of Engineering Physics, 2006
    [21]
    Friedman M, Krall J, Lau Y Y, et al. Externally modulation of IREBs[J]. J Appl Phys, 1988, 55(26): 3353-3379.
    [22]
    Xia Lihong, Huang Boyun, Zhang Fuqin, et al. Effect of heat treatment on cracking and strength of carbon/carbon composites with smooth laminar pyrocarbon matrix[J]. Materials and Design, 2016, 107: 33-40. doi: 10.1016/j.matdes.2016.06.017
    [23]
    张福勤, 夏莉红, 王欣欣, 等. 改进晶须碳/碳复合材料的一种制作方法. ZL201410817939.7[P]. 2014-10-16.

    Zhang Fuqin, Xia Lihong, Wang Xinxin, et al. A kind of manufacturing method of C/C composite material by modified crystal beard: ZL201410817939.7 [P]. 2014-10-16
    [24]
    王淦平, 张福勤, 黄华, 等. 碳碳复合阴极在相对论速调管放大器中的应用[J]. 强激光与粒子束, 2016, 28:053005. (Wang Ganping, Zhang Fuqin, Huang Hua, et al. Application of carbon/carbon composite cathode in RKA[J]. High Power Laser and Particle Beams, 2016, 28: 053005 doi: 10.11884/HPLPB201628.053005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1284) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return