Volume 32 Issue 12
Nov.  2020
Turn off MathJax
Article Contents
Lu Qiao, Mao qinghe. Two key frontier issues on picosecond pulses generated by mode-locked fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32: 121005. doi: 10.11884/HPLPB202032.200210
Citation: Lu Qiao, Mao qinghe. Two key frontier issues on picosecond pulses generated by mode-locked fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32: 121005. doi: 10.11884/HPLPB202032.200210

Two key frontier issues on picosecond pulses generated by mode-locked fiber lasers

doi: 10.11884/HPLPB202032.200210
  • Received Date: 2020-07-20
  • Rev Recd Date: 2020-09-27
  • Publish Date: 2020-11-19
  • Narrowband dissipative soliton mode-locked fiber lasers can produce transform-limited picosecond pulses. Unfortunately, due to the limitation of allowable nonlinear phase shift for the intracavity pulse, the repetition rate of the pulses generated by such lasers cannot be reduced by increasing the cavity length; the pulse energy is only below 0.1 nJ. These seriously restrict the practical application of such picosecond pulsed fiber lasers. In this paper, we propose a method that allows the cavity length to be increased to reduce the repetition rate of the narrowband dissipative soliton picosecond fiber laser pulses by extracting the pulse energy out of the cavity with a coupler to suppress the accumulation of nonlinear phase shift of the intracavity pulses. Using this method, the laser repetition rate was successfully reduced from 35.2 MHz to 1.77 MHz, and the pulse time-frequency characteristics remained unchanged. We also propose a method to suppress spectral broadening in picosecond pulse fiber amplification based on inter-stage FBG notch filtering. By simply using the inter-stage notch filter, the output pulse spectrum width after the first-stage fiber amplifier can be narrowed, allowing the second-stage fiber amplifier to further increase the pulse energy, and also, the pulse can be reshaped to be nearly Gaussian-shaped, allowing the second-stage fiber amplifier to increase the pulse energy higher by using the Gaussian pulse characteristics of the smaller spectral broadening slope. Using this method, on the premise of keeping the RMS spectral width within 0.4 nm, after a 10 ps pulse passes through a standard single-mode fiber amplifier, the pulse energy can be increased from 0.2 nJ to more than 10 nJ.
  • loading
  • [1]
    Zhao Z, Sheehy B, Minty M. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier[J]. Optics Express, 2017, 25(7): 8138-8143. doi: 10.1364/OE.25.008138
    [2]
    Yang K, Zheng S, Wu Y, et al. Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy[J]. Optics Express, 2018, 26(13): 17519-17528. doi: 10.1364/OE.26.017519
    [3]
    Phillips K C, Gandhi H H, Mazur E, et al. Ultrafast laser processing of materials: a review[J]. Adv Opt Photon, 2015, 7(4): 684-712. doi: 10.1364/AOP.7.000684
    [4]
    Fattahi H, Barros H G, Gorjan M, et al. Third-generation femtosecond technology[J]. Optica, 2014, 1(1): 45-63. doi: 10.1364/OPTICA.1.000045
    [5]
    康民强, 邓颖, 王方, 等. 皮秒脉冲激光远程测距应用探讨及系统初步设计[J]. 激光与光电子学进展, 2015, 52(10):241-245. (Kang Mingqiang, Deng Ying, Wang Fang, et al. Discuss and design of picosecond laser pulse applied in long-distance ranging[J]. Laser & Optoelectronics Progress, 2015, 52(10): 241-245
    [6]
    Chen W, Liu B, Song Y, et al. High pulse energy fiber/solid-slab hybrid picosecond pulse system for material processing on polycrystalline diamonds[J]. High Power Laser Science and Engineering, 2018, 6: e18. doi: 10.1017/hpl.2018.20
    [7]
    郑向明, 李祝莲, 伏红林, 等. 云台1.2 m望远镜共光路千赫兹卫星激光测距系统[J]. 光子学报, 2011, 31: 0512002.

    Zheng Xiangming, Li Zhulian, Fu Honglin, et al. 1.2 m telescope satellite co-optical path kHZ laser ranging system[J]. Acta Optica Sinica, 2011, 31: 0512002.
    [8]
    Ma P, Tao R, Huang L, et al. 608 W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality[J]. Journal of Optics, 2015, 17: 075501. doi: 10.1088/2040-8978/17/7/075501
    [9]
    Chan H Y, Alam S U, Xu L, et al. Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier[J]. Optics Express, 2014, 22(18): 21938-21943. doi: 10.1364/OE.22.021938
    [10]
    Minasian R A. Ultra-wideband and adaptive photonic signal processing of microwave signals[J]. IEEE Journal of Quantum Electronics, 2016, 52(1).
    [11]
    Kanzelmeyer S, Sayinc H, Theeg T, et al. All-fiber based amplification of 40 ps pulses from a gain-switched laser diode[J]. Optics Express, 2011, 19(3): 1854-1859. doi: 10.1364/OE.19.001854
    [12]
    Zayhowski J J, Dill C. Diode-pumped passively Q-switched picosecond microchip lasers[J]. Optics Letters, 1994, 19(18): 1427-1429. doi: 10.1364/OL.19.001427
    [13]
    Wang P, Zhou S H, Lee K K, et al. Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser[J]. Optics Communications, 1995, 114(5): 439-441.
    [14]
    Nodop D, Limpert J, Hohmuth R, et al. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime[J]. Optics Letters, 2007, 32(15): 2115-2117. doi: 10.1364/OL.32.002115
    [15]
    Fu W, Wright L G, Sidorenko P, et al. Several new directions for ultrafast fiber lasers [Invited][J]. Optics Express, 2018, 26(8): 9432-9463. doi: 10.1364/OE.26.009432
    [16]
    Nelson L, Jones D, Tamura K, et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B: Lasers and Optics, 1997, 65(2): 277-294. doi: 10.1007/s003400050273
    [17]
    Haus H A, Tamura K, Nelson L E, et al. Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment[J]. IEEE Journal of Quantum Electronics, 1995, 31(3): 591-598. doi: 10.1109/3.364417
    [18]
    Ilday F O, Buckley J R, Clark W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Phys Rev Lett, 2004, 92: 213902. doi: 10.1103/PhysRevLett.92.213902
    [19]
    Chong A, Renninger W H, Wise F W. Environmentally stable all-normal-dispersion femtosecond fiber laser[J]. Optics Letters, 2008, 33(10): 1071-1073. doi: 10.1364/OL.33.001071
    [20]
    Liu Z, Ziegler Z M, Wright L G, et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 2017, 4(6): 649-654. doi: 10.1364/OPTICA.4.000649
    [21]
    Chong A, Wright L G, Wise F W. Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress[J]. Reports on Progress in Physics, 2015, 78(11).
    [22]
    Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 2012, 6(2): 84-92. doi: 10.1038/nphoton.2011.345
    [23]
    Sidorenko P, Fu W, Wright L G, et al. Self-seeded, multi-megawatt, Mamyshev oscillator[J]. Optics Letters, 2018, 43(11): 2672-2675. doi: 10.1364/OL.43.002672
    [24]
    Sidorenko P, Fu W, Wright L G, et al. Self-seeded high-power Mamyshev oscillator[C]//Proceedings of the Conference on Lasers and Electro-Optics. 2018.
    [25]
    Renninger W H, Chong A, Wise F W. Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 389-398. doi: 10.1109/JSTQE.2011.2157462
    [26]
    Renninger W, Chong A, Wise F. Dissipative solitons in normal-dispersion fiber lasers[J]. Physical Review A, 2008, 77: 023814. doi: 10.1103/PhysRevA.77.023814
    [27]
    Turchinovich D, Liu X, Laegsgaard J. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber[J]. Optics Express, 2008, 16(18): 14004-14014. doi: 10.1364/OE.16.014004
    [28]
    Deslandes P, Perrin M, Saby Y J, et al. Picosecond to femtosecond pulses from high power self mode–locked ytterbium rod-type fiber laser[J]. Optics Express, 2013, 21(9): 10731-10738. doi: 10.1364/OE.21.010731
    [29]
    Szczepanek J, Kardas T M, Michalska M, et al. Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror[J]. Optics Letters, 2015, 40(15): 3500-3503. doi: 10.1364/OL.40.003500
    [30]
    Agnesi A, Carral, Marco C, et al. Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm[J]. IEEE Photonics Technology Letters, 2012, 24(9): 927.
    [31]
    Anderson D, Desaix M, Lisak M, et al. Wave breaking in nonlinear-optical fibers[J]. J Opt Soc Am B, 1992, 9(8): 1358-1361. doi: 10.1364/JOSAB.9.001358
    [32]
    Lu Q, Ma J, Duan D, et al. Reducing the pulse repetition rate of picosecond dissipative soliton passively mode-locked fiber laser[J]. Optics Express, 2019, 27(3): 2809-2816. doi: 10.1364/OE.27.002809
    [33]
    赵明, 郝强, 郭政儒, 等. 结构紧凑的kHz重复频率光纤-固体皮秒激光光源[J]. 中国激光, 2018, 45:0401010. (Zhao Ming, Hao Qiang, Guo Zengru, et al. Compact fiber-solid picosecond laser source with kilohertz repetition rate[J]. Chinese Journal of Lasers, 2018, 45: 0401010 doi: 10.3788/CJL201845.0401010
    [34]
    Agnesi A, Carra L, Pirzio F, et al. Low repetition rate, hybrid fiber/solid-state, 1064 nm picosecond master oscillator power amplifier laser system[J]. J Opt Soc Am B, 2013, 30(11): 2960-2965. doi: 10.1364/JOSAB.30.002960
    [35]
    Chen Y, Liu K, Yang J, et al. 8.2 mJ, 324 MW, 5 kHz picosecond MOPA system based on Nd: YAG slab amplifiers[J]. Journal of Optics, 2016, 18: 075503. doi: 10.1088/2040-8978/18/7/075503
    [36]
    Hönninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. J Opt Soc Am B, 1999, 16(1): 46-56. doi: 10.1364/JOSAB.16.000046
    [37]
    Fattahi H, Schwarz A, Geng X T, et al. Decoupling chaotic amplification and nonlinear phase in high-energy thin-disk amplifiers for stable OPCPA pumping[J]. Optics Express, 2014, 22(25): 31440-31447. doi: 10.1364/OE.22.031440
    [38]
    Agnesi A, Carrà L, Piccoli R, et al. Nd: YVO4 amplifier for ultrafast low-power lasers[J]. Optics Letters, 2012, 37(17): 3612-3614. doi: 10.1364/OL.37.003612
    [39]
    Chang C L, Krogen P, Hong K H, et al. High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier[J]. Optics Express, 2015, 23(8): 10132-10144. doi: 10.1364/OE.23.010132
    [40]
    Délen X, Balembois F, Georges P. Design of a high gain single stage and single pass Nd: YVO4 passive picosecond amplifier[J]. J Opt Soc Am B, 2012, 29(9): 2339-2346. doi: 10.1364/JOSAB.29.002339
    [41]
    Bale B G, Kutz J N, Chong A, et al. Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers[J]. J Opt Soc Am B, 2008, 25(10): 1763-1670. doi: 10.1364/JOSAB.25.001763
    [42]
    Baumgartl M, Abreu-Afonso J, Díez A, et al. Environmentally stable picosecond Yb fiber laser with low repetition rate[J]. Applied Physics B, 2013, 111(1): 39-43.
    [43]
    Liu X. Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser[J]. Physical Review A, 2010, 81: 023811. doi: 10.1103/PhysRevA.81.023811
    [44]
    Chong A, Renninger W H, Wise F W. Properties of normal-dispersion femtosecond fiber lasers[J]. J Opt Soc Am B, 2008, 25(2): 140-148. doi: 10.1364/JOSAB.25.000140
    [45]
    Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ[J]. Optics Letters, 2007, 32(16): 2408-2410. doi: 10.1364/OL.32.002408
    [46]
    Renninger W H, Chong A, Wise F W. Giant-chirp oscillators for short-pulse fiber amplifiers[J]. Optics Letters, 2008, 33(24): 3025-3027. doi: 10.1364/OL.33.003025
    [47]
    Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 2012, 37(2): 253-255. doi: 10.1364/OL.37.000253
    [48]
    Limpert J, Deguil-Robin N, Manek-Hönninger I, et al. High-power picosecond fiber amplifier based on nonlinear spectral compression[J]. Optics Letters, 2005, 30(7): 714-716. doi: 10.1364/OL.30.000714
    [49]
    Zhao Z, Dunham B M, Wise F W. Generation of 150 W average and 1 MW peak power picosecond pulses from a rod-type fiber master oscillator power amplifier[J]. J Opt Soc Am B, 2014, 31(1): 33-37. doi: 10.1364/JOSAB.31.000033
    [50]
    Chen W, Song Y, Jung K, et al. Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser[J]. Optics Express, 2016, 24(2): 1347-1357. doi: 10.1364/OE.24.001347
    [51]
    Wang Y, Lu B L, Qi X Y, et al. Environmentally stable pulse energy-tunable picosecond fiber laser[J]. IEEE Photonics Technology Letters, 2016, 29(1): 150-153.
    [52]
    Finot C, Chaussard F, Boscolo S. Simple guidelines to predict self-phase modulation patterns[J]. J Opt Soc Am B, 2018, 35(12): 3143-3152. doi: 10.1364/JOSAB.35.003143
    [53]
    Griffiths P R, Haseth J A D. Fourier Transform infrared spectrometry[M]. New Jersey: Wiley Press. 2006.
    [54]
    Schimpf D N, Seise E, Limpert J, et al. Self-phase modulation compensated by positive dispersion in chirped-pulse systems[J]. Optics Express, 2009, 17(7): 4997-5007. doi: 10.1364/OE.17.004997
    [55]
    Agrawal G. Nonlinear fiber optics[M]. Boston: Academic Press. 2013.
    [56]
    Pinault S C, Potask M J. Frequency broadening by self-phase modulation in optical fibers[J]. J Opt Soc Am B, 1985, 2(8): 1318-1319. doi: 10.1364/JOSAB.2.001318
    [57]
    Lu Q, Ma J, Duan D, et al. High fidelity picosecond pulse fiber amplification with inter-stage notch filter[J]. Journal of Lightwave Technology, 2020(99): 1-1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article views (1808) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return