Volume 33 Issue 1
Nov.  2020
Turn off MathJax
Article Contents
Yü Shihan, Li Xiaofeng, Weng Suming, et al. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33: 012006. doi: 10.11884/HPLPB202133.200125
Citation: Yü Shihan, Li Xiaofeng, Weng Suming, et al. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33: 012006. doi: 10.11884/HPLPB202133.200125

Laser plasma instabilities and their suppression strategies

doi: 10.11884/HPLPB202133.200125
  • Received Date: 2020-05-16
  • Rev Recd Date: 2020-08-17
  • Publish Date: 2020-11-19
  • The issue of laser plasma instabilities (LPIs) including stimulated Raman scattering, stimulated Brillouin scattering and so on is one of the most fascinating subjects in laser plasma physics. In particular, LPIs may cause significant laser energy loss and produce hot electrons to preheat fusion targets, which affect target compression and fusion energy gain in laser-driven inertial confinement fusion. Recent experiments carried out on the National Ignition Facility, the largest laser facility in the world for laser fusion, indicate that the understanding and the control of LPIs are essential to the realization of laser fusion. In this paper, we present a review on recent studies of LPIs. Firstly, we retrospect the classical theoretical model of LPIs, which offers a good estimation of growth rate in the linear development stage. Then, we discuss some progresses on the understanding of LPIs in more complex and real scenarios, such as LPI development in the nonlinear regions, cascaded LPIs, multi-beam LPIs, and nonlinear couplings between LPIs. Following the exploration of LPI physics, we emphasize on the strategies for the control of LPIs, including beam smoothing techniques, temporal profile shaping, broadband laser, laser polarization rotation, external magnetic field and so on.
  • loading
  • [1]
    Atzeni S, Meyerter-Vehn J. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter[M]. London: Oxford Press, 2004:317-388.
    [2]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339. doi: 10.1063/1.1578638
    [3]
    Froula D H, Divol L, London R A, et al. Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility[J]. Physics of Plasmas, 2010, 17: 056302. doi: 10.1063/1.3304474
    [4]
    Hinkel D E, Rosen M D, Williams E A, et al. Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility[J]. Physics of Plasmas, 2011, 18: 056312. doi: 10.1063/1.3577836
    [5]
    Drake J F, Kaw P K, Lee Yichang, et al. Parametric instabilities of electromagnetic waves in plasmas[J]. The Physics of Fluids, 1974, 17(4): 778-785. doi: 10.1063/1.1694789
    [6]
    Forslund D W, Kindel J M, Lindman E L. Theory of stimulated scattering processes in laser-irradiated plasmas[J]. The Physics of Fluids, 1975, 18(8): 1002-1016. doi: 10.1063/1.861248
    [7]
    Kruer W L. The physics of laser plasma interactions[M]. Carlifornia: Addison-Wesley Publishing, 1988: 73-94.
    [8]
    Liu Chuansheng, Tripathi V K, Eliasson B. High-power laser-plasma interaction[M]. London: Cambridge University Press, 2019: 180-227.
    [9]
    Montgomery D S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion[J]. Physics of Plasmas, 2016, 23: 055601. doi: 10.1063/1.4946016
    [10]
    Umstadter D, Williams R, Clayton C, et al. Observation of steepening in electron plasma waves driven by stimulated Raman backscattering[J]. Physical Review Letters, 1987, 59(3): 292-295. doi: 10.1103/PhysRevLett.59.292
    [11]
    Umstadter D, Mori W B, Joshi C. The coupling of stimulated Raman and Brillouin scattering in a plasma[J]. Physics of Fluids B: Plasma Physics, 1989, 1(1): 183-187. doi: 10.1063/1.859085
    [12]
    Zhao Yao, Sheng Zhengming, Weng Suming, et al. Absolute instability modes due to rescattering of stimulated Raman scattering in a large nonuniform plasma[J]. High Power Laser Science and Engineering, 2019, 7: e20. doi: 10.1017/hpl.2019.5
    [13]
    Kruer W L, Estabrook K, Lasinski B F, et al. Raman backscatter in high temperature, inhomogeneous plasmas[J]. Physics of Fluids, 1980, 23(7): 1326-1329. doi: 10.1063/1.863145
    [14]
    Mima K, M. S. Jovanović, Sentoku Y, et al. Stimulated photon cascade and condensate in a relativistic laser-plasma interaction[J]. Physics of Plasmas, 2001, 8(5): 2349-2356. doi: 10.1063/1.1356741
    [15]
    Winjum B J, Fahlen J E, Tsung F S, et al. Anomalously hot electrons due to re scatter of stimulated Raman scattering in the kinetic regime[J]. Physical Review Letters, 2013, 110: 165001. doi: 10.1103/PhysRevLett.110.165001
    [16]
    Liu Chuansheng, Rosenbluth M N, White R B. Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas[J]. The Physics of Fluids, 1974, 17(6): 1211-1219. doi: 10.1063/1.1694867
    [17]
    Feng Qingsong, Liu Zhanjun, Zheng Chunyang, et al. Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser–plasma interaction[J]. Plasma Physics and Controlled Fusion, 2017, 59: 075007. doi: 10.1088/1361-6587/aa710a
    [18]
    Xiao Chengzhuo, Zhuo Hongbin, Yin Yan, et al. Linear theory of multibeam parametric instabilities in homogeneous plasmas[J]. Physics of Plasmas, 2019, 26: 062109. doi: 10.1063/1.5096850
    [19]
    Baldis H A, Villeneuve D M, Labaune C, et al. Coexistence of stimulated Raman and Brillouin scattering in laser-produced plasmas[J]. Physics of Fluids B: Plasma Physics, 1991, 3(8): 2341-2348. doi: 10.1063/1.859602
    [20]
    Zhao Yao, Yu Lule, Weng Suming, et al. Inhibition of stimulated Raman scattering due to the excitation of stimulated Brillouin scattering[J]. Physics of Plasmas, 2017, 24: 092116. doi: 10.1063/1.5004689
    [21]
    杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学: 物理学 力学 天文学, 2018, 48(6):21-36. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Science Sinica Physical, Mechanical & Astronomica, 2018, 48(6): 21-36
    [22]
    Lindl J D. Inertial confinement fusion[M]. New York: Springer-Verlag, 1998.
    [23]
    Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462. doi: 10.1063/1.344101
    [24]
    Dixit S N, Feit M D, Perry M D, et al. Designing fully continuous phase screens for tailoring focal-plane irradiance profiles[J]. Optics Letters, 1996, 21(21): 1715-1717. doi: 10.1364/OL.21.001715
    [25]
    Lefebvre E, Berger R L, Langdon A B, et al. Reduction of laser self-focusing in plasma by polarization smoothing[J]. Physics of Plasmas, 1998, 5(7): 2701-2705. doi: 10.1063/1.872957
    [26]
    Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243-255. doi: 10.1016/j.mre.2017.07.004
    [27]
    Afeyan B, Hüller S. Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE[C]//EPJ Web of Conferences. EDP Sciences, 2013, 59: 05009.
    [28]
    Albright B J, Yin Lilan, Afeyan B. Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay[J]. Physical Review Letters, 2014, 113: 045002. doi: 10.1103/PhysRevLett.113.045002
    [29]
    Thomson J J, Karush J I. Effects of finite-bandwidth driver on the parametric instability[J]. The Physics of Fluids, 1974, 17(8): 1608-1613. doi: 10.1063/1.1694940
    [30]
    Obenschain S P, Luhmann Jr N C, Greiling P T. Effects of finite-bandwidth driver pumps on the parametric-decay instability[J]. Physical Review Letters, 1976, 36(22): 1309-1312. doi: 10.1103/PhysRevLett.36.1309
    [31]
    Guzdar P N, Liu Chuansheng, Lehmberg R H. The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas[J]. Physics of Fluids B: Plasma Physics, 1991, 3(10): 2882-2888. doi: 10.1063/1.859921
    [32]
    Dodd E S, Umstadter D. Coherent control of stimulated Raman scattering using chirped laser pulses[J]. Physics of Plasmas, 2001, 8(8): 3531-3534. doi: 10.1063/1.1382820
    [33]
    Zhao Yao, Weng Suming, Chen Min, et al. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma[J]. Physics of Plasmas, 2017, 24: 112102. doi: 10.1063/1.5003420
    [34]
    Zhao Yao, Weng Suming, Sheng Zhengming, et al. Suppression of parametric instabilities in inhomogeneous plasma with multi-frequency light[J]. Plasma Physics and Controlled Fusion, 2019, 61: 115008. doi: 10.1088/1361-6587/ab4691
    [35]
    Zhou H Y, Xiao Chengzhuo, Zou Debin, et al. Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime[J]. Physics of Plasmas, 2018, 25: 062703. doi: 10.1063/1.5030153
    [36]
    Follett R K, Shaw J G, Myatt J F, et al. Thresholds of absolute instabilities driven by a broadband laser[J]. Physics of Plasmas, 2019, 26: 062111. doi: 10.1063/1.5098479
    [37]
    Follett R K, Shaw J G, Myatt J F, et al. Suppressing two-plasmon decay with laser frequency detuning[J]. Physical Review Letters, 2018, 120: 135005. doi: 10.1103/PhysRevLett.120.135005
    [38]
    Barth I, Fisch N J. Reducing parametric backscattering by polarization rotation[J]. Physics of Plasmas, 2016, 23: 102106. doi: 10.1063/1.4964291
    [39]
    Zhou Hongyu, Xiao Chengzhuo, Jiao Jinlong, et al. Kinetic simulation of nonlinear stimulated Raman scattering excited by a rotated polarized pump[J]. Plasma Physics and Controlled Fusion, 2019, 61: 105004. doi: 10.1088/1361-6587/ab34ba
    [40]
    Liu Zhanjun, Zheng Chunyang, Cao Lihua, et al. Decreasing Brillouin and Raman scattering by alternating-polarization light[J]. Physics of Plasmas, 2017, 24: 032701. doi: 10.1063/1.4977910
    [41]
    Ban Shuaishuai, Wang Qing, Liu Zhanjun, et al. Suppression of stimulated Brillouin scattering by two perpendicular linear polarization lasers[J]. AIP Advances, 2020, 10: 025123. doi: 10.1063/1.5141009
    [42]
    Hinkel D E, Edwards M J, Amendt P A, et al. Progress toward ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2013, 55: 124015. doi: 10.1088/0741-3335/55/12/124015
    [43]
    Feng Qingsong, Zheng Chunyang, Liu Zhanjun, et al. Stimulated Brillouin scattering behaviors in multi-ion species plasmas in high-temperature and high-density region[J]. Physics of Plasmas, 2019, 26: 052101. doi: 10.1063/1.5088372
    [44]
    Paknezhad A, Dorranian D. Nonlinear backward Raman scattering in the short laser pulse interaction with a cold underdense transversely magnetized plasma[J]. Laser and Particle Beams, 2011, 29(3): 373-380. doi: 10.1017/S0263034611000474
    [45]
    Liu Zhanjun, Li Bin, Xiang Jiang, et al. Faraday effect on stimulated Raman scattering in the linear region[J]. Plasma Physics and Controlled Fusion, 2018, 60: 045008. doi: 10.1088/1361-6587/aaae32
    [46]
    Edwards M R, Shi Yuan, Mikhailova J M, et al. Laser amplification in strongly magnetized plasma[J]. Physical Review Letters, 2019, 123: 025001. doi: 10.1103/PhysRevLett.123.025001
    [47]
    Cui Yong, Gao Yanqi, Rao Daxing, et al. High-energy low-temporal-coherence instantaneous broadband pulse system[J]. Optics Letters, 2019, 44(11): 2859-2862. doi: 10.1364/OL.44.002859
    [48]
    Regan S P. Laser direct-drive inertial confinement fusion research on OMEGA[R]. Rochester: Laboratory for Laser Energetics(LLE), University of Rochester, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article views (2469) PDF downloads(283) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return