Volume 33 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Zhang Xue, Wang Tao, Yu Qianqian, et al. Research progress of high-power waveguide window[J]. High Power Laser and Particle Beams, 2021, 33: 023001. doi: 10.11884/HPLPB202133.200257
Citation: Zhang Xue, Wang Tao, Yu Qianqian, et al. Research progress of high-power waveguide window[J]. High Power Laser and Particle Beams, 2021, 33: 023001. doi: 10.11884/HPLPB202133.200257

Research progress of high-power waveguide window

doi: 10.11884/HPLPB202133.200257
  • Received Date: 2020-09-06
  • Rev Recd Date: 2020-11-04
  • Publish Date: 2021-01-07
  • High-power waveguide window is a critical component of high-power klystron and accelerator. The RF breakdown of the waveguide window always cause the failure of the high-power klystron. In this paper, the research progress of high-power waveguide window in the international vacuum electronics field is introduced. The research status, manufacturing requirement, and RF breakdown mechanism of the classical pill-box window are presented at first. Then the characters of some new type waveguide windows such as the tapered window, travelling wave in ceramic window, mixed-mode window, and over-mode window are summarized. Some breakdown suppression technologies like changing the material character of the window disk, changing the surface configuration of the window disk, using the positive dielectric angle, applying DC electric field or DC magnetic field, changing the waveform of transverse electric field are emphasized at the end.

  • loading
  • [1]
    丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010.

    Ding Yaogen. Desgin, manufacture and application of high power klystron. Beijing: National Defence Industry Press, 2010
    [2]
    Kazakov S. High-power RF sources and components for linear colliders[R]. Fermi National Accelerator Laboratory, 2007, 15.
    [3]
    丁耀根. 大功率速调管的技术现状和最新进展[J]. 真空电子技术, 2020(1):1-25. (Ding Yaogen. Technical status and latest progress of high power klystron[J]. Vacuum Electronics, 2020(1): 1-25
    [4]
    朱小芳, 胡权, 胡玉禄, 等. 大功率同轴与波导窗的结构与设计原理综述[J]. 真空科学与技术学报, 2016, 36(3):340-350. (Zhu Xiaofang, Hu Quan, Hu Yulu, et al. A review of the structure and design principle of high-power coaxial and waveguide windows[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(3): 340-350
    [5]
    Bohlen H P. Advanced high-power microwave vacuum electron device development[C]//Proceedings of the Particle Accelerator Conference. 1999: 445-449.
    [6]
    储开荣, 窦钺, 盛兴, 等. X波段高峰值功率TE01模式圆波导行波窗的研制[J]. 真空电子技术, 2017(6):31-35. (Chu Kairong, Dou Yue, Sheng Xing, et al. Development of X-band peak power TE01 mode circular waveguide traveling window[J]. Vacuum Electronics, 2017(6): 31-35
    [7]
    储开荣, 盛兴, 李冬凤, 等. X波段50 MW速调管的研制[J]. 强激光与粒子束, 2020, 32:103012. (Chu Kairong, Sheng Xing, Li Dongfeng, et al. Development of X-band 50 MW klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103012
    [8]
    Miura A, Matsumoto H. Development of an S-band RF window for linear colliders[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 334(2/3): 341-352.
    [9]
    Michizono S, Saito Y, Fukuda S, et al. RF windows used at S-band pulsed klystrons in the KEK linac[J]. Vacuum, 1996, 47(6/8): 625-628.
    [10]
    张雪, 徐强, 王勇, 等. 高功率盒形窗内次级电子倍增效应[J]. 强激光与粒子束, 2016, 28:023004. (Zhang Xue, Xu Qiang, Wang Yong, et al. Secondary electron multiplier effect in high power box window[J]. High Power Laser and Particle Beams, 2016, 28: 023004 doi: 10.11884/HPLPB201628.023004
    [11]
    Michizono S, Saito Y. Surface discharge and surface potential on alumina RF windows[J]. Vacuum, 2001, 60: 235-239. doi: 10.1016/S0042-207X(00)00380-8
    [12]
    Sakai T, Sato I, Hayakawa K, et al, S-band klystron for long pulse operation[C]//Proceedings of International Linear Accelerator Conference. 2002. 712-714.
    [13]
    Michizono S. Secondary electron emission from alumina RF windows[J]. IEEE Trans Dielectrics and Electrical Insulation, 2007, 14(3): 583-592. doi: 10.1109/TDEI.2007.369517
    [14]
    Neuber A, Dickens J, Hemmert D, et al. Window breakdown caused by high-power microwaves[J]. IEEE Trans Plasma Science, 1998, 26(3): 296-303. doi: 10.1109/27.700757
    [15]
    Neuber A, Hemmert D, Krompholz H, et al. Initiation of high power microwave dielectric interface breakdown[J]. Journal of Applied Physics, 1999, 86(3): 1724-1728. doi: 10.1063/1.370953
    [16]
    张雪, 王勇, 范俊杰, 等. TM11模对高功率盒形窗次级电子倍增效应影响的研究[J]. 真空电子技术, 2014(04):19-23. (Zhang Xue, Wang Yong, Fan Junjie, et al. Research on the influence of TM11 on secondary electron multiplication effect of high power box-shaped windows[J]. Vacuum Electronics, 2014(04): 19-23 doi: 10.3969/j.issn.1002-8935.2014.04.006
    [17]
    Zhu Xiaofang, Hao Yiliang, Hu Yulu, et al. Scattering matrix analysis of a high-power pill-box-type window without ghost mode[C]//International Vacuum Electronics Conference. 2017.
    [18]
    张志强, 罗积润, 张兆传. S波段大功率宽带速调管输出窗鬼模振荡的抑制[J]. 电子与信息学报, 2017, 39(3):731-736. (Zhang Zhiqiang, Luo Jirun, Zhang Zhaochuan. Suppression of ghost mode oscillation in output window of S-band high power broadband klystron[J]. Journal of Electronics and Information Technology, 2017, 39(3): 731-736
    [19]
    Cai Jinchi, Hu Linlin, Ma Guowu, et al. Theoretical and experimental study of the modified pill-box window for the 220-GHz folded waveguide BWO[J]. IEEE Trans Plasma Science, 2014, 42(10): 3349-3357. doi: 10.1109/TPS.2014.2349919
    [20]
    Hu Peng, Lei Wenqiang, Jiang Yi, et al. The vacuum window for 0.34-THz folded waveguide traveling wave tube[C]//International Vacuum Electronics Conference. 2019.
    [21]
    Yang Tongbin, Lu Dun, Fu Wenjie, et al. A broadband low-leoss W-band pill-box window[C]//International Vacuum Electronics Conference. 2019.
    [22]
    Otake Y, Tokumoto S, Kazakov S Y, et al. High-power tests of X-band RF windows at KEK[C]//Proceedings of the Third Workshop on Pulsed RF Sources for Linear Colliders. 1996, 30: 315-322.
    [23]
    Zhang Xue, Wang Yong, Fan Junjie, et al. Development of new pill-box window for S-band high power klystron[J]. Journal of Electronics, 2014, 31(1): 78-84.
    [24]
    Zhang Xue, Tang Haobei, Chen Xuyuan, et al. Multipactor discharge in circular waveguide window[J]. Physics of Plasmas, 2020, 27: 043504. doi: 10.1063/1.5142341
    [25]
    Otake Y, Tokumoto S, Mizuno H. Design and high-power test of a TE11-mode X-band RF window with taper transitions[C]//Proceedings of the Particle Accelerator Conference. 1995: 1590-1592.
    [26]
    柴媛媛, 刘庆想, 张健穹, 等. X波段新型圆波导输出窗的研究[J]. 微波学报, 2014(s1):525-527. (Chai Yuanyuan, Liu Qingxiang, Zhang Jianqiong, et al. Research on a new X-band circular waveguide output window[J]. Journal of Microwaves, 2014(s1): 525-527
    [27]
    Kazakov S Y. Increased power RF-window[C]//BINP Preprint. 1992.
    [28]
    Michizono S, Saito Y, Mizuno H, et al. High-power test of pill-box and TW-in-ceramic type S-band windows[C]//Proceedings of the 17th International Linac Conference. 1994: 21-26.
    [29]
    Buyanova M N, Nechaev V E, Semenov V E. Multipactor discharge on a dielectric surface in the field of circularly polarized plane wave[J]. Radio physics and Quantum Electron, 2007, 50(10/11): 893-907.
    [30]
    Fowkes W, Callin R S, Tantawi S G, et al. Reduced field TE01/X-band travelling wave window[C]//Proceedings of the Particle Accelerator Conference 1995: 1587-1589.
    [31]
    Fowkes W R, Jongewaard E N, Callin R S, et al. Design considerations for very high power RF windows at X-band[C]//Proceedings of the 19th International Linear Accelerator Conference: 1998: 243.
    [32]
    Fowkes W R, Callin R S, Jongewaard E N, et al. Large diameter reduced field TE01 traveling wave window for X-band[C]//Proceedings of the 1999 Particle Accelerator Conference. 1999.
    [33]
    Kazakov S. New compact TE10–TE01 mode converter and TE01-TE02 window[R]. ISG-8, 24-28, 2002.
    [34]
    Michizono S, Matsumoto T, Nakao K, et al. Development of C-band high-power mix-mode RF windows[C]//Proceedings of Linear Accelerator Conference. 2004.
    [35]
    Kazakov S Y. A New Traveling-wave mixed-mode RF window with a low electric field in ceramic-metal brazing area[J]. KEK Preprint, 1998-8: 98-120.
    [36]
    Tokumoto S, Chin Y H, Mizuno H, et al. High power testing results of the X-band mixed-mode RF windows for linear colliders[C]//Linear Accelerator Conference. 2000: 21-25.
    [37]
    Kazakov S, Higo T, Matsumoto S. TE11/TM11 mixed-mode wave guide valve at X-band[C]//Proceedings of IPAC. 2010.
    [38]
    Yamaguchi S, Matsumoto S, Tokumoto S, et al. High-power test results of Kazakov RF window[C]//Linear Accelerator Conferenc. 1999.
    [39]
    Joo Y, Lee B J, Kong H S, et al. Development of new S-band RF window for stable high-power operation in linear accelerator RF system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866: 1-8.
    [40]
    常超. 高功率微波系统中的击穿机理[J]. 北京: 科学出版社, 2015.

    Chang Chao. Breakdown mechanism in high power microwave system[J]. Beijing: Science Press, 2015
    [41]
    Miller H C. Flashover of insulators in vacuum: the last twenty years[J]. IEEE Trans Dielectrics and Electrical Insulation, 2015, 22(6): 3641-3657.
    [42]
    Michizono S. TiN film coatings on alumina radio frequency windows[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(4): 1180-1184.
    [43]
    焦晓静, 苏党帅, 王茜. TiN镀层对射频器件表面二次电子倍增的抑制作用[J]. 微波学报, 2012(s1):282-287. (Jiao Xiaojing, Su Dangshuai, Wang Qian. Suppression of surface multipactor in RF devices by TiN coating[J]. Journal of Microwaves, 2012(s1): 282-287
    [44]
    Peng Zhen, Chen Gen, Zhao Yanping, et al. Investigation of TiN film on an RF ceramic window by atomic layer deposition[J]. Journal of Vacuum Science & Technology A, 2020, 38: 052401.
    [45]
    刘湘龙, 李晓云, 杨建, 等. 真空电绝缘性能的影响[J]. 人工晶体学报, 2014, 43(3):857-861. (Liu Xianglong, Li Xiaoyun, Yang Jian, et al. Effect of Chromium doping on vacuum electrical insulation performance of alumina ceramics[J]. Journal of Synthetic Crystals, 2014, 43(3): 857-861
    [46]
    Huo Yankun, Liu Wenyuan, Guo Yuewen, et al. Molecule self-assembly on alumina ceramic insulator to enhance its vacuum surface voltage withstand strength[J]. Journal of Applied Physics, 2020, 127: 243304. doi: 10.1063/5.0006233
    [47]
    Chang Chao, Liu Guozhi, Huang Haojie, et al. Suppressing high-power microwave dielectric multipactor by the sawtooth surface[J]. Physics of Plasmas, 2009, 16: 083501. doi: 10.1063/1.3200900
    [48]
    Cheng Guoxin, Cai Dan, Hong Zhiqiang, et al. Variation in time lags of vacuum surface flashover utilizing a periodically grooved dielectric[J]. IEEE Trans Dielectrics and Electrical Insulation, 2013, 20(5): 1942-1950. doi: 10.1109/TDEI.2013.6633728
    [49]
    Cai Libing, Wang Jianguo, Cheng Guoxin, et al. Self-consistent simulation of radio frequency multipactor on micro-grooved dielectric surface[J]. Journal of Applied Physics, 2015, 117: 053302. doi: 10.1063/1.4907683
    [50]
    Zhang Xue, Wang Yong, Fan Junjie, et al. The suppression effect of a periodic surface with semicircular grooves on the high power microwave long pill-box window multipactor phenomenon[J]. Physics of Plasmas, 2014, 21: 092101. doi: 10.1063/1.4894222
    [51]
    Chang Chao, Liu Yansheng, Verboncoeur J, et al. The effect of periodic wavy profile on suppressing window multipactor under arbitrary electromagnetic mode[J]. Applied Physics Letters, 2015, 106: 014102. doi: 10.1063/1.4905280
    [52]
    Chang Chao, Verboncoeur J, Wei Fuli, et al. Nanosecond discharge at the interfaces of flat and periodic ripple surfaces of dielectric window with air at varied pressure[J]. IEEE Trans Dielectrics and Electrical Insulation, 2017, 24(1): 375-381. doi: 10.1109/TDEI.2016.006047
    [53]
    田志英, 尚阿曼, 张巨先. 氧化铝陶瓷表面状态对其真空耐压性能的影响[J]. 真空科学与技术学报, 2015, 35(10):1169-1173. (Tian Zhiying, Shang Aman, Zhang Juxian. Effect of surface state of alumina ceramic on its vacuum compressive resistance[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(10): 1169-1173
    [54]
    Jordan N M, Lau Y Y, French D M, et al. Electric field and electron orbits near a triple point[J]. Journal of Applied Physics, 2007, 102: 033301. doi: 10.1063/1.2764211
    [55]
    Foster J, Thomas M, Neuber A A. Variation in the statistical and formative time lags of high power microwave surface flashover utilizing a superimposed dc electric field[J]. Journal of Applied Physics, 2009, 106: 063310. doi: 10.1063/1.3226866
    [56]
    Ivanov O A, Lobaev M A, Isaev V A, et al. Suppressing and initiation of multipactor discharge on a dielectric by an external dc bias[J]. Physical Review Special Topics - Accelerators and Beams, 2010, 13: 022004. doi: 10.1103/PhysRevSTAB.13.022004
    [57]
    Zhang Jianwei, Luo Wei, Wang Hongguang, et al. Suppression of high-power microwave window breakdown by the sweeping-out-electron effect with an external dc bias electric field[J]. Physics of Plasmas, 2019, 26: 123503. doi: 10.1063/1.5123411
    [58]
    Valfells A, Ang L K, Lau Y Y, et al. Effects of an external magnetic field, and of oblique radio-frequency electric fields on multipactor discharge on a dielectric[J]. Physics of Plasmas, 2000, 7(2): 750. doi: 10.1063/1.873861
    [59]
    Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Suppression of high-power microwave dielectric multipactor by resonant magnetic field[J]. Applied Physics Letters, 2010, 96: 111502. doi: 10.1063/1.3360853
    [60]
    Zhang Xue, Wang Yong, Fan Junjie. The suppression effect of external magnetic field on the high-power microwave window multipactor phenomenon[J]. Physics of Plasmas, 2015, 22: 022110. doi: 10.1063/1.4907248
    [61]
    Semenov V, Kryazhev A, Anderson D, et al. Multipactor suppression in amplitude modulated radio frequency fields[J]. Physics of Plasmas, 2001, 8(11): 5034-5039. doi: 10.1063/1.1410980
    [62]
    Anza S, Mattes M, Vicente C, et al. Multipactor theory for multicarrier signals[J]. Physics of Plasmas, 2011, 18: 032105. doi: 10.1063/1.3561821
    [63]
    Rice S A, Verboncoeur J P. Migration of multipactor trajectories via higher-order mode perturbation[J]. IEEE Trans Plasma Science, 2017, 45: 1739-1745. doi: 10.1109/TPS.2017.2704522
    [64]
    Iqbal A, Verboncoeur J, Zhang P. Multipactor susceptibility on a dielectric with two carrier frequencies[J]. Physics of Plasmas, 2018, 25: 043501. doi: 10.1063/1.5024365
    [65]
    Iqbal A, Wong P Y, Verboncoeur J P, et al. Frequency-domain analysis of single-surface multipactor discharge with single- and dual-tone RF electric fields[J]. IEEE Trans Plasma Science, 2020, 48(6): 1950-1958. doi: 10.1109/TPS.2020.2978785
    [66]
    Wen D Q, Iqbal A, Zhang P, et al. Suppression of single-surface multipactor discharges due to non-sinusoidal transverse electric field[J]. Physics of Plasmas, 2019, 26: 093503. doi: 10.1063/1.5111734
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(2)

    Article views (1763) PDF downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return