Volume 33 Issue 5
May  2021
Turn off MathJax
Article Contents
Jia Qinggang, Yang Bo, Xu Haibo, et al. Study on imaging simulation of electronic photography[J]. High Power Laser and Particle Beams, 2021, 33: 054002. doi: 10.11884/HPLPB202133.200300
Citation: Jia Qinggang, Yang Bo, Xu Haibo, et al. Study on imaging simulation of electronic photography[J]. High Power Laser and Particle Beams, 2021, 33: 054002. doi: 10.11884/HPLPB202133.200300

Study on imaging simulation of electronic photography

doi: 10.11884/HPLPB202133.200300
  • Received Date: 2020-11-02
  • Rev Recd Date: 2021-03-27
  • Available Online: 2021-04-28
  • Publish Date: 2021-05-20
  • High energy electron radiography is a useful nondestructive method for density material diagnosis. The higher the kinetic energy, the stronger penetrability the electron has. Thus electron with GeV energy is considered for probing the density material. This paper aims at 2.5 GeV electron radiography. The key processes of radiography are studied by Monte Carlo simulation. All simulations are carried out by Geant4 code. Firstly, basic physical processes including the transport of electrons in the quadrupole lens group and the attenuation of the interaction between electrons and matter are constructed by Geant4 code. Some details about the physics setup are given. Four samples of different materials and thickness, with voids inside, are designed as the object of simulation radiography. Other necessary geometries for electronic photography such as quadrupole and pixel detector are built as well. Then a large-scale electronic photography is simulated. In addition to this, two step samples made of copper and tungsten, respectively, are employed as object for the radiography simulation. In the simulation, collimated line electron source radiates objects, then the line spread function of the electron beam passing through the different area density is obtained. Based on the simulated results, evaluation about the detection and resolution ability of 2.5 GeV electron radiography is shown.
  • loading
  • [1]
    Merrill F, Harmon F, Hunt A, et al. Electron radiography[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 261(1/2): 382-386.
    [2]
    Maenchen J E, Menge P R, Rovang D C, et al. Intense electron beams for radiography[R]. Albuquerque: Sandia National Laboratories, 2000.
    [3]
    Merrill F E. Flash proton radiography[J]. Reviews of Accelerator Science and Technology, 2015, 8: 165-180. doi: 10.1142/S1793626815300091
    [4]
    卢亚鑫, 杨国君, 魏涛, 等. 高能电子照相成像模糊模拟研究[J]. 强激光与粒子束, 2016, 28:014002. (Lu Yaxin, Yang Guojun, Wei Tao, et al. Image blur in high energy electron radiography[J]. High Power Laser and Particle Beams, 2016, 28: 014002 doi: 10.11884/HPLPB201628.014002
    [5]
    卢亚鑫, 杨国君, 魏涛, 等. 2.5 GeV高能电子照相实验束线设计及成像能力研究[J]. 高能量密度物理, 2017, 3(1):25-30. (Lu Yaxin, Yang Guojun, Wei Tao, et al. [J]. High Energy Density Physics, 2017, 3(1): 25-30
    [6]
    赵全堂, 张子民, 曹树春, 等. 高能电子成像研究进展[J]. 原子能科学技术, 2019, 53(9):1651-1655. (Zhao Quantang, Zhang Zimin, Cao Shuchun, et al. Status and progress of high energy electron radiography[J]. Atomic Energy Science and Technology, 2019, 53(9): 1651-1655 doi: 10.7538/yzk.2019.youxian.0160
    [7]
    卢亚鑫. 基于Geant4的高能电子照相模拟研究[D]. 绵阳: 中国工程物理研究院, 2016.

    Lu Yaxin. Charged particle radiography study by using Geant4[D]. Mianyang: China Academy of Engineering Physics, 2016.
    [8]
    肖家浩. 高能电子成像技术在高能量密度物质诊断中的应用[D]. 北京: 中国科学院大学, 2019.

    Xiao Jiahao. The application of high energy electron radiography in high energy density materials diagnosis[D]. Beijing: University of Chinese Academy of Sciences, 2019.
    [9]
    王致远. 高能电子成像方法的初步研究[D]. 北京: 清华大学, 2014.

    Wang Zhiyuan. The preliminary research of imaging diagnostic by high energy electron beam[D]. Beijing: Tsinghua University, 2014.
    [10]
    肖渊, 王晓方, 滕建, 等. 激光加速电子束放射照相的模拟研究[J]. 物理学报, 2012, 61:234102. (Xiao Yuan, Wang Xiaofang, Tengjian, et al. Simulation study of radiography using laser-produced electron beam[J]. Acta Physica Sinica, 2012, 61: 234102 doi: 10.7498/aps.61.234102
    [11]
    Xiao Jiahao, Zhang Zimin, Cao Shuchun, et al. Areal density and spatial resolution of high energy electron radiography[J]. Chinese Physics B, 2018, 27: 035202. doi: 10.1088/1674-1056/27/3/035202
    [12]
    Zhu Yunliang, Yuan Ping, Cao Shuchun, et al. Design and simulation of a LINAC for high energy electron radiography research[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 911: 74-78.
    [13]
    Rong Qi, Ye Tian, Zhang Guoqing, et al. High-energy electron radiography of microstructures in a dense material[J]. The European Physical Journal Applied Physics, 2016, 75(3): 30701. doi: 10.1051/epjap/2016160009
    [14]
    Knoll G F. Radiation detection and measurement[M]. 4th Ed. New York: John Wiley & Sons Inc, 2010.
    [15]
    Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (908) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return