Volume 33 Issue 4
May  2021
Turn off MathJax
Article Contents
Chen Xibing, Jiang Xiaodong, Cao Linhong, et al. Influence of ammonia-hexamethyldisilazane on environmental stability of SiO2 chemical film[J]. High Power Laser and Particle Beams, 2021, 33: 041001. doi: 10.11884/HPLPB202133.200317
Citation: Chen Xibing, Jiang Xiaodong, Cao Linhong, et al. Influence of ammonia-hexamethyldisilazane on environmental stability of SiO2 chemical film[J]. High Power Laser and Particle Beams, 2021, 33: 041001. doi: 10.11884/HPLPB202133.200317

Influence of ammonia-hexamethyldisilazane on environmental stability of SiO2 chemical film

doi: 10.11884/HPLPB202133.200317
  • Received Date: 2020-11-21
  • Rev Recd Date: 2021-03-18
  • Available Online: 2021-04-10
  • Publish Date: 2021-05-02
  • The single-layer SiO2 chemical films prepared by sol-gel technology were modified with different amounts of ammonia-hexamethyldisilazane (HMDS) atmosphere at room temperature, and then the anti-pollution porformance of the chemical films for dibutyl phthalate (DBP) contamination were tested under low vacuum condition. In addition, the ultraviolet-visible-near-infrared spectrophotometer UV-Vis-NIR), infrared spectrometer and atomic force microscope were used to analyze the evolution of chemical film characteristics before and after modification. The results show that after DBP contamination, the peak transmittance of the chemical film modified by 15−30 mL ammonia-HMDS is 99.8%, which is increased by 3.5% compared with that of the chemical film before modification. At this time, the chemical films have excellent anti-pollution properties. Although the ammonia-HMDS treatment can significantly enhance the anti-pollution performance of DBP contamination of the chemical film, excessive amount of ammonia-HMDS will lead to the laser damage threshold of the chemical film to decrease from 24.3 J/cm2 to 19.3 J/cm2. The research is helpful to optimize the process parameters to improve the anti-pollution performance of the chemical film, which has great significance for practical engineering applications.
  • loading
  • [1]
    Zhang Xinxiang, Zhuang Mengyun, Miao Xia, et al. Environment-resistant fluoro-containing antireflective coatings for high-powered laser systems[J]. RSC Advances, 2014, 4(90): 48872-48875. doi: 10.1039/C4RA05449K
    [2]
    Pareek R, Kumbhare M N, Mukherjee C, et al. Effect of oil vapor contamination on the performance of porous silica sol-gel antireflection-coated optics in vacuum spatial filters of high-power neodymium glass laser[J]. Optical Engineering, 2008, 47: 023801. doi: 10.1117/1.2844551
    [3]
    Wang Xiaodong, Shen Jun. A review of contamination-resistant antireflective sol–gel coatings[J]. Journal of Sol-Gel Science and Technology, 2012, 61(1): 206-212. doi: 10.1007/s10971-011-2615-4
    [4]
    Lu Xiaoying, Wang Zhen, Yang Xiaoli, et al. Antifogging and antireflective silica film and its application on solar modules[J]. Surface and Coatings Technology, 2011, 206(6): 1490-1494. doi: 10.1016/j.surfcoat.2011.09.031
    [5]
    Gou Weiwei, Che Xiaogang, Yu Xuejie, et al. Facile fabrication of waterborne fabric coatings with multifunctional superhydrophobicity and thermal insulation[J]. Materials Letters, 2019, 250: 123-126. doi: 10.1016/j.matlet.2019.05.008
    [6]
    Joo W, Kim Y, Jang S, et al. Antireflection coating with enhanced anti-scratch property from nanoporous block copolymer template[J]. Thin Solid Films, 2011, 519(11): 3804-3808. doi: 10.1016/j.tsf.2011.01.107
    [7]
    Niu Yanyan, Yao Lanfang, Shen Jun, et al. Hydrophobic and optical properties of HMDS/silica hybrid antireflective coating prepared via sol-gel method[J]. Rare Metal Materials and Engineering, 2016, 45(s1): 258-261.
    [8]
    Huang Jichen, Liu Yuan, Cao Yuanyuan, et al. Durable silica antireflective coating prepared by combined treatment of ammonia and KH570 vapor[J]. Journal of Coatings Technology and Research, 2018, 16(2): 615-622.
    [9]
    Liu Yuan, Shen Jun, Zhou Bin, et al. Effect of hydrophobicity on the stability of sol–gel silica coatings in vacuum and their laser damage threshold[J]. Journal of Sol-Gel Science and Technology, 2013, 68(1): 81-87. doi: 10.1007/s10971-013-3137-z
    [10]
    赵松楠, 晏良宏, 吕海兵, 等. 不同后处理方法对溶胶-凝胶SiO2膜层抗污染能力的影响[J]. 强激光与粒子束, 2009, 21(2):240-244. (Zhao Songnan, Yan Lianghong, Lü Haibing, et al. Effects of different treatments on contamination resistant capability of sol-gel SiO2 film[J]. High Power Laser and Particle Beams, 2009, 21(2): 240-244
    [11]
    Zhang Xinxiang, Zheng Feng, Ye Longqiang, et al. A one-pot sol–gel process to prepare a superhydrophobic and environment-resistant thin film from ORMOSIL nanoparticles[J]. RSC Advances, 2014, 4(19): 9838-9841. doi: 10.1039/c3ra47185c
    [12]
    Ai Ling, Zhang Jing, Li Xiao, et al. Universal low-temperature process for preparation of multifunctional high-performance antireflective mesoporous silica coatings on transparent polymeric substrates[J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4993-4999.
    [13]
    Gun'Ko V M, Vedamuthu M S, Henderson G L, et al. Mechanism and kinetics of hexamethyldisilazane reaction with a fumed silica surface[J]. Journal of Colloid and Interface Science, 2000, 228(1): 157-170. doi: 10.1006/jcis.2000.6934
    [14]
    Xu Ligang, Geng Zhi, He Junhui, et al. Mechanically robust, thermally stable, broadband antireflective, and superhydrophobic thin films on glass substrates[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9029-9035.
    [15]
    郭袁俊, 祖小涛, 蒋晓东, 等. 氨处理对溶胶凝胶增透膜激光损伤阈值的影响[J]. 光电工程, 2008, 35(7):126-129. (Guo Yuanjun, Zu Xiaotao, Jiang Xiaodong, et al. Effect of ammonia treatment on laser-induced damage threshold of sol-gel silica films[J]. Opto-Electronic Engineering, 2008, 35(7): 126-129 doi: 10.3969/j.issn.1003-501X.2008.07.025
    [16]
    霍艳芳, 罗荣辉, 苏永钢. 水氨或/和六甲基二硅氮烷表面处理碱催化二氧化硅增透膜结果的对比研究[J]. 光子学报, 2013, 42(7):823-827. (Huo Yanfang, Luo Ronghui, Su Yonggang. Comparison of base-catalyzed silica antireflective coatings modified by different Surface treatments of Water-NH3 and/or hexamethyldisilazane vapors[J]. Acta Photonica Sinica, 2013, 42(7): 823-827 doi: 10.3788/gzxb20134207.0823
    [17]
    Belleville P F, Floch H G. Ammonia hardening of porous silica antireflective coatings[J]. Proceedings of the SPIE, 1994, 2288: 25-32. doi: 10.1117/12.188957
    [18]
    Thomas I M, Burnham A K, Ertel J R, et al. Method for reducing the effect of environmental contamination of sol-gel optical coatings[J]. Proceedings of the SPIE, 1999, 3492: 220-229. doi: 10.1117/12.354236
    [19]
    Yoshida K, Yabe T, Yoshida H, et al. Mechanism of damage formation in antireflection coatings[J]. Journal of Applied Physics, 1986, 60(5): 1545-1546.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (1024) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return