Volume 33 Issue 5
May  2021
Turn off MathJax
Article Contents
Kan Mingxian, Wang Ganghua, Liu Lixin, et al. Simulation of magnetically driven quasi-isentropic compression experiments with windows[J]. High Power Laser and Particle Beams, 2021, 33: 055001. doi: 10.11884/HPLPB202133.200329
Citation: Kan Mingxian, Wang Ganghua, Liu Lixin, et al. Simulation of magnetically driven quasi-isentropic compression experiments with windows[J]. High Power Laser and Particle Beams, 2021, 33: 055001. doi: 10.11884/HPLPB202133.200329

Simulation of magnetically driven quasi-isentropic compression experiments with windows

doi: 10.11884/HPLPB202133.200329
  • Received Date: 2020-12-09
  • Rev Recd Date: 2021-04-23
  • Available Online: 2021-04-28
  • Publish Date: 2021-05-20
  • The material parameters and functional modules of LiF are added to the two-dimensional magnetically driven simulation code (MDSC2), which makes MDSC2 code have the ability to simulate the magnetically driven quasi-isentropic compression experiments with windows. Magnetically driven experiments with windows, shots of exp-3-window and exp-6-window, which were carried out in a large pulsed power device, are simulated and analyzed by the MDSC2 code. The simulated flyer plate/window interface velocities agree well with the experimental records by Velocity Interferometry System for Any Reflector (VISAR). The magneto-hydrodynamic code can correctly simulate the magnetically driven experiments with windows, which is helpful to understand the physical mechanism of sample material behaviors in magnetically driven experiments with windows.
  • loading
  • [1]
    Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. Journal of Applied Physics, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
    [2]
    Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. Journal of Applied Physics, 2005, 98: 073530. doi: 10.1063/1.2084316
    [3]
    Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Physical Review Letters, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
    [4]
    Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa[J]. Physical Review Letters, 2003, 90: 035505. doi: 10.1103/PhysRevLett.90.035505
    [5]
    Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Physical Review B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
    [6]
    Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25: 671-694. doi: 10.1016/j.ijplas.2008.12.003
    [7]
    Reisman D B, Toor A, Cauble R C. Magnetically driven isentropic compression experiments on the Z accelerator[J]. Journal of Applied Physics, 2001, 89(3): 1625-1633. doi: 10.1063/1.1337082
    [8]
    Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Physics of Plasmas, 2003, 10(4): 1092-1099. doi: 10.1063/1.1554740
    [9]
    Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [10]
    Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. J Appl Phys, 2014, 116: 204903. doi: 10.1063/1.4902863
    [11]
    Kan Mingxian, Zhang Zhaohui, Xiao Bo, et al. Simulation of magnetically driven flyer plate experiments with an improved magnetic field boundary formula[J]. High Energy Density Physics, 2018, 26: 38-43. doi: 10.1016/j.hedp.2017.12.002
    [12]
    阚明先, 王刚华, 肖波, 等. 磁驱动单侧飞片实验的数值模拟研究[J]. 爆炸与冲击, 2020, 40:033304. (Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Simulation on magnetically-driven one-sided flyer plate experiment[J]. Explosion and shock waves, 2020, 40: 033304 doi: 10.11883/bzycj-2019-0103
    [13]
    Deng Jianjun, Xie Weiping, Feng Shuping, et al. Initial performance of the primary test stand[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2580-2583. doi: 10.1109/TPS.2013.2274154
    [14]
    Ding Ning, Zhang Yang, Xiao Delong, et al. Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM[J]. Matter and Radiation at Extremes, 2016, 1(3): 135-152. doi: 10.1016/j.mre.2016.06.001
    [15]
    阚明先, 张朝辉, 段书超, 等. “聚龙一号”装置上磁驱动铝飞片实验的数值模拟[J]. 强激光与粒子束, 2015, 27:125001. (Kan Mingxian, Zhang Zhaohui, Duan Shuchao, et al. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator[J]. High Power Laser and Particle Beams, 2015, 27: 125001 doi: 10.11884/HPLPB201527.125001
    [16]
    王贵林, 张朝辉, 郭帅, 等. 聚龙一号装置上铜的准等熵压缩线测量实验研究[J]. 强激光与粒子束, 2016, 28:055010. (Wang Guilin, Zhang Zhaohui, Guo Shuai, et al. Experimental masurement of qusai-isentrope for copper on PTS[J]. High Power Laser and Particle Beams, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010
    [17]
    阚明先, 王刚华, 赵海龙, 等. 磁驱动飞片二维磁流体力学数值模拟[J]. 强激光与粒子束, 2013, 25(8):2137-2141. (Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137
    [18]
    阚明先, 王刚华, 张红平, 等. 磁驱动高速飞片模拟中滑移界面处理[J]. 强激光与粒子束, 2015, 27:015002. (Kan Mingxian, Wang Ganghua, Zhang Hongping, et al. Sliding interface processing in simulation on magnetically driving high speed flyer[J]. High Power Laser and Particle Beams, 2015, 27: 015002 doi: 10.11884/HPLPB201527.015002
    [19]
    阚明先, 王刚华, 肖波, 等. 二维弹塑性磁流体力学数值模拟[J]. 强激光与粒子束, 2018, 30:065002. (Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Two dimensional elasto-plastic MHD numerical simulation[J]. High Power Laser and Particle Beams, 2018, 30: 065002 doi: 10.11884/HPLPB201830.170306
    [20]
    阚明先, 段书超, 张朝辉, 等. 二维磁驱动数值模拟程序MDSC2的验证与确认[J]. 强激光与粒子束, 2019, 31:065001. (Kan Mingxian, Duan Shuchao, Zhang Zhaohui, et al. Verification and validation of two dimensional magnetically driven simulation code MDSC2[J]. High Power Laser and Particle Beams, 2019, 31: 065001
    [21]
    阚明先, 王刚华, 赵海龙, 等. 金属电阻率模型[J]. 爆炸与冲击, 2013, 33(3):282-286. (Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Electrical resistivity model for metals[J]. Explosion and shock waves, 2013, 33(3): 282-286 doi: 10.3969/j.issn.1001-1455.2013.03.010
    [22]
    阚明先, 段书超, 王刚华, 等. 自由面被烧蚀磁驱动飞片的数值模拟[J]. 强激光与粒子束, 2017, 29:045003. (Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Numerical simulation of magnetically driven flyer plate of ablated free surface[J]. High Power Laser and Particle Beams, 2017, 29: 045003 doi: 10.11884/HPLPB201729.160482
    [23]
    阚明先, 杨龙, 段书超, 等. 聚龙一号上磁驱动铝飞片发射实验的数值分析与再设计[J]. 爆炸与冲击, 2017, 37(5):793-798. (Kan Mingxian, Yang Long, Duan Shuchao, et al. Numerical anlaysis and redesign of magnetically driven aluminum flyer plate on PTS accelerator[J]. Explosion and Shock waves, 2017, 37(5): 793-798 doi: 10.11883/1001-1455(2017)05-0793-06
    [24]
    阚明先, 段书超, 杨龙, 等. 磁驱动飞片发射实验结构系数初步研究[J]. 强激光与粒子束, 2020, 32:085002. (Kan Mingxian, Duan Shuchao, Yanglong, et al. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32: 085002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views (917) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return