Volume 33 Issue 5
May  2021
Turn off MathJax
Article Contents
Shen Ning, Yan Liping, Gu Zhiyuan, et al. Electromagnetic shielding analysis of electronic systems containing frequency selective surface structure in K/Ka band[J]. High Power Laser and Particle Beams, 2021, 33: 053006. doi: 10.11884/HPLPB202133.210043
Citation: Shen Ning, Yan Liping, Gu Zhiyuan, et al. Electromagnetic shielding analysis of electronic systems containing frequency selective surface structure in K/Ka band[J]. High Power Laser and Particle Beams, 2021, 33: 053006. doi: 10.11884/HPLPB202133.210043

Electromagnetic shielding analysis of electronic systems containing frequency selective surface structure in K/Ka band

doi: 10.11884/HPLPB202133.210043
  • Received Date: 2021-02-04
  • Rev Recd Date: 2021-05-07
  • Available Online: 2021-05-20
  • Publish Date: 2021-05-20
  • The frequency continuous extension to K/Ka band for electronic devices and wireless technology, as well the fast development of integrated electronic system have made the electromagnetic shielding design of electronic systems increasingly challenging. In this paper, a new shielding method which incorporates frequency selective surface (FSS) into electronic systems to replace the conventional heat dissipation holes array is proposed. The proposed shielding method can meet the requirements of both ventilation and electromagnetic shielding performance at 5G millimeter wave band. Based on the shielding effectiveness (SE) at the center point in the enclosure and the global shielding effectiveness, the influences of the arrangement of FSS cells and the polarization and incident angle of electromagnetic waves on SEs of the metallic enclosure are analyzed. The results show that the arrangement of FSS cells have little effects on the shielding performance of the metallic enclosure, and SE hardly changes with the polarization of the electromagnetic waves. The shielding effectiveness of the metallic enclosure with the FSS is about 30 dB in the frequency range of 23.0−25.5 GHz, which is 15 dB higher than that of the enclosure with the conventional heat dissipation holes array. This demonstrates that the method proposed in this paper has better electromagnetic shielding while keep good ventilation at the same time.
  • loading
  • [1]
    Celozzi S, Araneo R, Lovat G. Electromagnetic shielding[M]. Hoboken: John Wiley and Sons, 2008.
    [2]
    Paul C R. Introduction to electromagnetic compatibility[M]. Hoboken: John Wiley and Sons, 2006.
    [3]
    范颖鹏, 杜正伟, 龚克. 不同形状孔阵屏蔽效应的分析[J]. 强激光与粒子束, 2004, 16(11):1441-1444. (Fan Yingpeng, Du Zhengwei, Gong Ke. Analysis of shielding effect of different shape hole array[J]. High Power Laser and Particle Beams, 2004, 16(11): 1441-1444
    [4]
    吴刚, 邵小亮, 孙靖虎, 等. 有孔双层矩形金属机壳屏蔽效能[J]. 强激光与粒子束, 2015, 27:103219. (Wu Gang, Shao Xiaoliang, Sun Jinghu, et al. Shielding effectiveness of double-layer rectangular metal enclosure with holes[J]. High Power Laser and Particle Beams, 2015, 27: 103219 doi: 10.11884/HPLPB201527.103219
    [5]
    罗静雯, 杜平安, 任丹, 等. 基于BLT方程的双层腔体屏蔽效能计算方法[J]. 强激光与粒子束, 2015, 27:113201. (Luo Jingwen, Du Ping 'an, Ren Dan, et al. Calculation method of shielding effectiveness of double-layer enclosure based on BLT equation[J]. High Power Laser and Particle Beams, 2015, 27: 113201 doi: 10.11884/HPLPB201527.113201
    [6]
    程二威, 陈亚洲, 刘卫东, 等. 无人机外壳屏蔽效能测试方法[J]. 强激光与粒子束, 2017, 29:113201. (Cheng Erwei, Chen Yazhou, Liu Weidong, et al. Test method of shielding effectiveness of UAV enclosure[J]. High Power Laser and Particle Beams, 2017, 29: 113201 doi: 10.11884/HPLPB201729.170208
    [7]
    刘筝阳, 闫丽萍, 赵翔. 基于机器学习的开孔加载金属腔电磁屏蔽效能评估[J]. 强激光与粒子束, 2019, 31:083201. (Liu Zhengyang, Yan Liping, Zhao Xiang. Evaluation of electromagnetic shielding effectiveness of open hole loaded metal enclosure based on machine learning[J]. High Power Laser and Particle Beams, 2019, 31: 083201 doi: 10.11884/HPLPB201931.190079
    [8]
    Flintoft I D, Parker S L, Bale S J. Measured average absorption cross-sections of printed circuit boards from 2 to 20 GHz[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 553-560. doi: 10.1109/TEMC.2016.2515658
    [9]
    王坦, 何天琦. 5G毫米波焦点频段(26 GHz)全球研究动态与展望[J]. 电讯技术, 2018, 58(3):356-362. (Wang Tan, He Tianqi. 5G millimeter wave focus band (26 GHz) global research trends and prospects[J]. Telecommunications Technology, 2018, 58(3): 356-362 doi: 10.3969/j.issn.1001-893x.2018.03.020
    [10]
    Aghabarati A, Moini R, Fortin S, et al. Electromagnetic shielding analysis of spherical polyhedral structures generated by conducting wires and metallic surfaces[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(4): 1285-1293. doi: 10.1109/TEMC.2017.2670499
    [11]
    Sampath S S, Sivasamy R, Kumar K J J. A novel miniaturized polarization independent band-stop frequency selective surface[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(5): 1678-1681. doi: 10.1109/TEMC.2018.2869664
    [12]
    Li Da, Li Tianwu, Zhang Yaojiang, et al. A 2.5-D angularly stable frequency selective surface using via-based structure for 5G EMI shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(3): 768-775. doi: 10.1109/TEMC.2017.2748566
    [13]
    Sivasamy R, Murugasamy L, Kanagasabai M, et al. A low-profile paper substrate-based dual-band FSS for GSM shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 611-614. doi: 10.1109/TEMC.2015.2498398
    [14]
    许留留, 闫丽萍, 赵翔. 适用于5G电磁屏蔽的介质开孔型频率选择表面设计[J]. 太赫兹科学与电子信息学报, 2019, 17(4):616-620. (Xu Liuliu, Yan Lipin, Zhao Xiang. A dielectric open-hole frequency selective surface design for 5G electromagnetic shielding[J]. Journal of Terahertz Science and Electronic Information, 2019, 17(4): 616-620 doi: 10.11805/TKYDA201904.0616
    [15]
    Celozzi S. New figures of merit for the characterization of the performance of shielding enclosures[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(1): 142. doi: 10.1109/TEMC.2004.823627
    [16]
    Hill D A, Ma M T, Ondrejka A R, et al. Aperture excitation of electrically large, lossy cavities[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(3): 169-178. doi: 10.1109/15.305461
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (864) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return