Volume 33 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Wang Haiyang, Xiao Jing, Xie Linshen, et al. Modal analysis of the 32-stage modular Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 085001. doi: 10.11884/HPLPB202133.210054
Citation: Wang Haiyang, Xiao Jing, Xie Linshen, et al. Modal analysis of the 32-stage modular Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 085001. doi: 10.11884/HPLPB202133.210054

Modal analysis of the 32-stage modular Marx generator

doi: 10.11884/HPLPB202133.210054
  • Received Date: 2021-02-22
  • Rev Recd Date: 2021-08-02
  • Available Online: 2021-08-14
  • Publish Date: 2021-08-15
  • The dynamic characteristic parameters of the Marx generator can be obtained by modal analysis. In this paper, the simulation analysis and modal experiment of the 32-stage modular Marx generator are conducted to evaluate its mechanical environment adaptability. Firstly, the finite element simulation model of the modular Marx generator is constructed, and the initial vibration modes are acquired. Secondly, under free boundary condition, the integral modal experiment, local modal experiment and transfer characteristic experiment are conducted respectively. In the end, the integral and local modal parameters are calculated. Results show that the 32-stage modular Marx generator has a first-order torsion at 23.58 Hz; the inherent frequency of local structure of the Marx generator is relatively high; the vibration transmissibility scopes on x, y and z axis are respectively 5−15, 6−10 and 10−35. These conclusions provide reference to design Marx generator in later engineering phase.
  • loading
  • [1]
    邓明海, 曹宁翔, 马成刚, 等. 200 kV重复频率Marx发生器研制[J]. 强激光与粒子束, 2019, 31:055003. (Deng Minghai, Cao Ningxiang, Ma Chenggang, et al. Development of 200 kV repetitive Marx generator[J]. High Power Laser and Particle Beams, 2019, 31: 055003 doi: 10.11884/HPLPB201931.190369
    [2]
    Redjimi A, Nikolić Z, Knež ević D, et al. Post-processing synchronization and characterization of generated signals by a repetitive Marx generator[J]. Optical and Quantum Electronics, 2018, 50: 352. doi: 10.1007/s11082-018-1614-x
    [3]
    Elgenedy M A, Massoud A M, Ahmed S, et al. A modular multilevel voltage-boosting Marx pulse-waveform generator for electroporation applications[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10575-10589. doi: 10.1109/TPEL.2019.2899974
    [4]
    宋法伦, 李飞, 龚海涛, 等. 高功率重复频率Marx型脉冲功率源小型化技术研究进展[J]. 强激光与粒子束, 2018, 30:020201. (Song Falun, Li Fei, Gong Haitao, et al. Research progress on miniaturization of high power repetition frequency Marx type pulse power source[J]. High Power Laser and Particle Beams, 2018, 30: 020201 doi: 10.11884/HPLPB201830.170337
    [5]
    贾伟, 陈志强, 郭帆, 等. 典型布局Marx发生器内部过压形成与分布[J]. 华中科技大学学报(自然科学版), 2018, 46(10):110-115. (Jia Wei, Chen Zhiqiang, Guo Fan, et al. Formation mechanism and distribution of internal overvoltage of Marx generator with typical layouts[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2018, 46(10): 110-115
    [6]
    张永民, 陈维青, 杨莉, 等. 储能型Marx发生器的串联电感计算[J]. 高电压技术, 2009, 35(3):651-656. (Zhang Yongmin, Chen Weiqing, Yang Li, et al. Inductance calculation of storage Marx generator[J]. High Voltage Engineering, 2009, 35(3): 651-656
    [7]
    Nasab J N, Hadizade A, Mohsenzade S, et al. A Marx-based generator with adjustable FWHM using a controllable magnetic switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 324-331. doi: 10.1109/TDEI.2018.007522
    [8]
    王翔宇, 樊亚军, 乔汉青, 等. 全同轴型Marx发生器的研制与场路协同仿真[J]. 强激光与粒子束, 2019, 31:115001. (Wang Xiangyu, Fan Yajun, Qiao Hanqing, et al. Design of a coaxial Marx generator and field-circuit co-simulation[J]. High Power Laser and Particle Beams, 2019, 31: 115001 doi: 10.11884/HPLPB201931.190125
    [9]
    刘锐, 曾乃工, 王新新. 1.2 MV全封闭Marx发生器的绝缘结构设计[J]. 高电压技术, 2005, 31(4):69-70. (Liu Rui, Zeng Naigong, Wang Xinxin. Insulation design for a 1.2 MV enclosed Marx generator[J]. High Voltage Engineering, 2005, 31(4): 69-70 doi: 10.3969/j.issn.1003-6520.2005.04.026
    [10]
    高炳军, 王滨, 翟兰惠, 等. 吊带支撑低温储罐运输中随机振动分析[J]. 河北工业大学学报, 2018, 47(1):48-52, 58. (Gao Bingjun, Wang Bin, Zhai Lanhui, et al. Random vibration analysis of the strip-supported-cryogenic storage tank in transporting[J]. Journal of Hebei University of Technology, 2018, 47(1): 48-52, 58
    [11]
    瞿金秀, 石长全, 王磊超, 等. 不同老化状态黏弹夹层结构的模态分析[J]. 振动与冲击, 2020, 39(11):69-75. (Qu Jinxiu, Shi Changquan, Wang Leichao, et al. Modal analysis of viscoelastic sandwich structure with different aging states[J]. Journal of Vibration and Shock, 2020, 39(11): 69-75
    [12]
    张建斌. 带橡胶减振器的箭载电子设备动力学响应分析研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Zhang Jianbin.Research on dynamic response of the electronic equipment with rubber shock absorber on the rockets[D].Harbin: Harbin Institute of Technology, 2019
    [13]
    陈双, 包黎明, 於胜军. 不同路面工况下的整车振动模态能量分析[J]. 机械设计与制造, 2019(3):82-85, 90. (Chen Shuang, Bao Liming, Yu Shengjun. Modal energy analysis of vehicle vibration under different road[J]. Machinery Design & Manufacture, 2019(3): 82-85, 90
    [14]
    唐利涛, 杨舟, 李刚, 等. 基于疲劳损伤谱的随机振动试验方法在智能电表模拟公路运输中的研究[J]. 装备环境工程, 2019, 16(5):38-42. (Tang Litao, Yang Zhou, Li Gang, et al. Random vibration test method based on fatigue damage spectrum in simulation of road transport with smart meter[J]. Equipment Environmental Engineering, 2019, 16(5): 38-42
    [15]
    李勤建, 高翠琢, 边国辉. 组件的模态分析和随机振动分析[J]. 半导体技术, 2012, 37(10):810-814. (Li Qinjian, Gao Cuizhuo, Bian Guohui. Modal analysis and random vibration analysis on a module[J]. Semiconductor Technology, 2012, 37(10): 810-814 doi: 10.3969/j.issn.1003-353x.2012.10.015
    [16]
    王桂伦, 姜东, 周李真辉, 等. 铰接式空间桁架结构模态试验研究[J]. 振动与冲击, 2019, 38(12):252-257. (Wang Guilun, Jiang Dong, Zhou Lizhenhui, et al. Modal experiment for a spherical hinged space truss structure[J]. Journal of Vibration and Shock, 2019, 38(12): 252-257
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (830) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return