Volume 33 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Gao Zhiwei, Zhou Yuxiang, Zhu Siyi. Study on GIC algorithm of railway traction power supply system under action of late time HEMP[J]. High Power Laser and Particle Beams, 2021, 33: 093001. doi: 10.11884/HPLPB202133.210061
Citation: Gao Zhiwei, Zhou Yuxiang, Zhu Siyi. Study on GIC algorithm of railway traction power supply system under action of late time HEMP[J]. High Power Laser and Particle Beams, 2021, 33: 093001. doi: 10.11884/HPLPB202133.210061

Study on GIC algorithm of railway traction power supply system under action of late time HEMP

doi: 10.11884/HPLPB202133.210061
  • Received Date: 2021-03-01
  • Rev Recd Date: 2021-08-10
  • Available Online: 2021-09-04
  • Publish Date: 2021-09-15
  • The late effect of high-altitude electromagnetic pulse (E3) will cause dramatic changes in the Earth's magnetic field and form a ground induced electric field. The induced electric field is equivalent to forming a loop between the excitation source and the ground long-distance conductor and the Earth, generating a geomagnetic induction current (GIC). GIC can cause DC bias of the transformer in the traction power supply system, thereby seriously threatening the safe operation of the traction power supply system. Based on the plane wave theory, the layered Earth conductivity model and the circuit model of the traction power supply system, this paper proposes the GIC algorithm of the traction power supply system under the action of E3, and takes the railway traction power supply system with return line direct power supply as an example. Calculating the system GIC situation shows that the GIC in the traction power supply system under this power supply mode is far greater than the withstand value of the transformer and other equipment in the system. The study provides support for further research on the effect of the traction power supply system under the action of E3, the selection of our domestic railway equipment, and disaster prevention.
  • loading
  • [1]
    IEC 61000-2-9, Electromagnetic compatibility (EMC)—Part 2: environment—section 9: description of HEMP environment—radiated disturbance[S].
    [2]
    Gilbert J, Radasky W A, Smith K S, et al. HEMP TAPS/HEMP-PC audit report[R]. Meta R-131, 1999; DTRA-TR-00-1, 2002.
    [3]
    邢军强, 王菲, 韩刚, 等. 大地直流偏磁影响下电力变压器损耗及温升计算研究[J]. 电气技术, 2020, 21(1):20-24, 30. (Xing Junqiang, Wang Fei, Han Gang, et al. Research on loss and temperature rise calculation method of power transformer under the influence of geomagnetically induced current[J]. Electrical Engineering, 2020, 21(1): 20-24, 30 doi: 10.3969/j.issn.1673-3800.2020.01.007
    [4]
    师泯夏, 吴邦, 靳宇晖, 等. 直流偏磁对变压器影响研究综述[J]. 高压电器, 2018, 54(7):20-36, 43. (Shi Minxia, Wu Bang, Jin Yuhui, et al. Research summary on the impacts of DC magnetic bias on transformer[J]. High Voltage Apparatus, 2018, 54(7): 20-36, 43
    [5]
    Gilbert J, Kappenman J, Radasky W, et al. The late-time (E3) high-altitude electromagnetic pulse (HEMP) and its impact on the U. S. power grid[R]. Goleta: Oak Ridge National Laboratory, 2010.
    [6]
    Hutchins T. Modeling, simulation, and mitigation of the impacts of the late time (E3) high-altitude electromagnetic pulse on power systems[D]. Urbana: University of Illinois at Urbana-Champaign, 2016.
    [7]
    Lee R H W, Shetye K S, Birchfield A B, et al. Using detailed ground modeling to evaluate electric grid impacts of late-time high-altitude electromagnetic pulses (E3 HEMP)[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1549-1557. doi: 10.1109/TPWRS.2018.2878533
    [8]
    余同彬, 周璧华. HEMP作用下近地有限长电缆外皮感应电流研究[J]. 解放军理工大学学报(自然科学版), 2002, 3(1):8-12. (Yu Tongbin, Zhou Bihua. Study of HEMP induced current in cables with finite length near the ground[J]. Journal of PLA University of Science and Technology, 2002, 3(1): 8-12
    [9]
    赵志斌, 柯俊吉, 马丽斌. 高空核电磁脉冲晚期效应对电网稳定性影响的研究[J]. 电气技术, 2015, 16(9):16-19. (Zhao Zhibin, Ke Junji, Ma Libin. Research on impact of late-time HEMP to stability of power grids[J]. Electrical Engineering, 2015, 16(9): 16-19 doi: 10.3969/j.issn.1673-3800.2015.09.004
    [10]
    陈宇浩, 谢彦召, 刘民周, 等. 高空电磁脉冲作用下电力系统主要效应模式分析[J]. 强激光与粒子束, 2019, 31:070007. (Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007 doi: 10.11884/HPLPB201931.190184
    [11]
    Ngwira C M, Pulkkinen A, McKinnell L A, et al. Improved modeling of geomagnetically induced currents in the South African power network[J]. Space Weather, 2008, 6: S11004.
    [12]
    章鑫, 杜学彬, 刘君. 华北地区地电暴时GIC及涡旋电流响应分析[J]. 地球物理学报, 2017, 60(5):1800-1810. (Zhang Xin, Du Xuebin, Liu Jun. Analysis of GIC and vortex current responses in Huabei region during geoelectric storms[J]. Chinese Journal of Geophysics, 2017, 60(5): 1800-1810 doi: 10.6038/cjg20170516
    [13]
    李功新, 王倩, 刘连光. 输电线路地磁感应电流常用算法分析与研究[J]. 现代电力, 2005, 22(5):42-46. (Li Gongxin, Wang Qian, Liu Lianguang. Analysis and study of common algorithms for geomagnetic inductive current in grid[J]. Modern Electric Power, 2005, 22(5): 42-46 doi: 10.3969/j.issn.1007-2322.2005.05.009
    [14]
    Wait J R. Wave propagation theory[M]. New York: Pergamon, 1981.
    [15]
    Chew W C. Waves and fields in inhomogeneous media[M]. New York: IEEE Press, 1995.
    [16]
    Overbye T J, Shetye K S, Hutchins T R, et al. Power grid sensitivity analysis of geomagnetically induced currents[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4821-4828. doi: 10.1109/TPWRS.2013.2274624
    [17]
    TB 10009-2016, 铁路电力牵引供电设计规范[S].

    TB 10009-2016, Code for design of railway traction power supply[S].
    [18]
    周游. 不同强度地磁暴对高铁牵引网影响的研究[D]. 北京: 华北电力大学, 2016.

    Zhou You. Research on the effects of different intensities geomagnetic storms affecting high-speed railway traction network[D]. Beijing: North China Electric Power University, 2016.
    [19]
    马骋原. 强磁暴侵害高铁电气一次系统的建模方法研究[D]. 北京: 华北电力大学, 2015.

    Ma Chengyuan. Research on modeling method of strong geomagnetic storm impacting on high-speed rail electrical primary system[D]. Beijing: North China Electric Power University, 2015.
    [20]
    曹源. 用于电网GIC计算的大地电阻率模型研究[D]. 北京: 华北电力大学, 2010.

    Cao Yuan. Earth resistivity modeling method for the evaluation of Geomagnetically Induced Current in power grid[D]. Beijing: North China Electric Power University, 2010.
    [21]
    DL/T 437-2012, 高压直流接地极技术导则[S].

    DL/T 437-2012, Technical guide of HVDC earth electrode system[S].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (944) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return