Volume 33 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Wu Lingjun, Deng Jian, Zhang Hang, et al. Discharge capacity requirements of severe accident depressurization valves[J]. High Power Laser and Particle Beams, 2021, 33: 076001. doi: 10.11884/HPLPB202133.210062
Citation: Wu Lingjun, Deng Jian, Zhang Hang, et al. Discharge capacity requirements of severe accident depressurization valves[J]. High Power Laser and Particle Beams, 2021, 33: 076001. doi: 10.11884/HPLPB202133.210062

Discharge capacity requirements of severe accident depressurization valves

doi: 10.11884/HPLPB202133.210062
  • Received Date: 2021-03-01
  • Rev Recd Date: 2020-04-21
  • Available Online: 2021-05-06
  • Publish Date: 2021-07-15
  • In the process of depressurization during severe accidents for the second generation nuclear power plant, high temperature fluid flowing through the severe accident depressurization valves may cause deformation of the valve body or even cause the valve stem to fall down because of being heated by high temperature fluid, resulting in depressurization failure. In this paper, the spectrum analysis of the high temperature fluid state that the depressurization valve may experience in the process of pressure relief is carried out, and the high temperature fluid state under different pressure relief capacities is obtained. The influence of the valve channel deformation caused by high temperature on the depressurization effect is studied. Although the second type valve has the possibility of valve channel deformation, it can obtain a longer time window for severe accident mitigation. From the perspective of optimizing the severe accident measures, the discharge capacity range of the second type valve 450-600 t/h is recommended.
  • loading
  • [1]
    Hanson D J, Golden D W, Chambers R, et a1. Depressurization as an accident management strategy to minimize the consequences of direct containment heating[R]. NUREG/CR-5447. 1990.
    [2]
    Brownson D, Haney L N, Chien N D. Intentional depressurization accident management strategy for PWR[R]. NUREG/CR-5937. 1993.
    [3]
    Kim S B, Lee H Y, Kim M H, et al. A parametric study of geometric effect on the debris dispersal from a reactor cavity during high pressure melt ejection[J]. International Communications in Heat and Mass Transfer, 1995, 22(1): 25-34. doi: 10.1016/0735-1933(94)00049-Q
    [4]
    Renaud M, Tanguy J. On the analysis and evaluation of direct containment heating with the multidimensional multiphase flow Code MC3D[J]. Science and Technology and Nuclear Installations, 2010(3): 1-13.
    [5]
    Shao Ge, Tong Lili, Cao Xuewu. Assessment of severe accident depressurization valve activation strategy for Chinese improved 1000 MWe PWR[J]. Science and Technology of Nuclear Installations, 2013(2): 1-8.
    [6]
    Zhang Kun, Cao Xuewu, Deng jian, et al. Evaluation of intentional depressurization strategy in Chinese 600 MWe PWR NPP – Science Direct[J]. Nuclear Engineering and Design, 2008, 238(7): 1720-1727. doi: 10.1016/j.nucengdes.2008.01.003
    [7]
    Seo S, Lee Y, Lee S, et al. Effectiveness and adverse effects of reactor coolant system depressurization strategy with various severe accident management guidance entry conditions for OPR1000[J]. Journal of Nuclear Science and Technology, 2015, 52(5): 695-708. doi: 10.1080/00223131.2014.978407
    [8]
    种毅敏, 杨志义, 石雪垚, 等. 二代改进型核电厂严重事故下一回路卸压时机敏感性研究[J]. 核科学与工程, 2015, 35(1):141-147. (Chong Yimin, Yang Zhiyi, Shi Xueyao, et al. Sensitivity analysis on time of reactor coolant system depressurization under severe accident for generation II+ nuclear power plants[J]. Nuclear Science and Engineering, 2015, 35(1): 141-147
    [9]
    张蕾, 黄挺, 崔成鑫, 等. AP1000核电站严重事故下一回路卸压时机敏感性分析[C]//第十四届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2015年度学术年会论文集. 2015.

    Zhang Lei, Huang Ting, Cui Chengxin, et al. Sensitivity analysis on timing of reactor coolant system depressurization under severe accident for AP1000 nuclear power plants// Proceedings of the 14th National Conference on Nuclear Reactor Thermal Hydraulics & 2015 Annual Conference of CNNC Nuclear Reactor Thermal Hydraulic Technology Key Laboratory, 2015
    [10]
    Huang Gaofeng, Tong Lili, Cao Xuewu. Study on mitigation of ex-vessel release of fission products in severe accidents for Chinese two loops PWR[J]. Progress in Nuclear Energy, 2015, 78: 56-64. doi: 10.1016/j.pnucene.2014.08.004
    [11]
    张琨, 佟立丽, 曹学武. 压水堆核电厂自然循环对一回路卸压策略的影响[J]. 核动力工程, 2009, 30(2):70-74. (Zhang Kun, Tong Lili, Cao Xuewu. Effect of natural circulation on RCS depressurization strategy in PWR NPP[J]. Nuclear Power Engineering, 2009, 30(2): 70-74
    [12]
    Park J W, Seol W C. Considerations for severe accident management under extended station blackout conditions in nuclear power plants[J]. Progress in Nuclear Energy, 2016, 88: 245-256. doi: 10.1016/j.pnucene.2016.01.005
    [13]
    陈艺芬, 黄志翱, 郑剑香, 等. CPR1000全厂断电叠加小破口失水事故下一回路外部注水策略分析[J]. 厦门大学学报(自然科学版), 2019, 58(6):855-863. (Chen Yifen, Huang Zhixiang, Zheng Jianxiang, et al. Analysis of primary system external water injection strategies of station blackout along with small break loss-of-coolant accident for CPR1000[J]. Journal of Xiamen University (Natural Science), 2019, 58(6): 855-863
    [14]
    唐琼辉, 周瑞, 王明毓, 等. 反应堆严重事故卸压管线瞬态传热特性与高温蠕变效应研究[J]. 中国科学: 技术科学, 2021, 51(2):176-184. (Tang Qionghui, Zhou Rui, Wang Mingyu, et al. The transient heat transfer and Larson-Miller creep failure analysis of severe accident relief pipeline[J]. Scientia Sinica (Technologica), 2021, 51(2): 176-184
    [15]
    The SCDAP/RELAP5 Development Team. SCDAP/RELAP5/MOD3.2 code manual[R]. NUREG/CR-6150. 1997.
    [16]
    张琨, 曹学武. 压水堆核电厂高压熔堆严重事故序列分析[J]. 原子能科学技术, 2008(6):530-534. (Zhang Kun, Cao Xuewu. Analysis of high-pressure core melt severe accidents in PWR nuclear power plant[J]. Atomic Energy Science and Technology, 2008(6): 530-534
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article views (691) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return