Volume 33 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Deng Liting, Zhong Longquan, Liu Qiang, et al. Uncertainty prediction of crosstalk measurement for multi-conductor transmission lines[J]. High Power Laser and Particle Beams, 2021, 33: 083002. doi: 10.11884/HPLPB202133.210066
Citation: Deng Liting, Zhong Longquan, Liu Qiang, et al. Uncertainty prediction of crosstalk measurement for multi-conductor transmission lines[J]. High Power Laser and Particle Beams, 2021, 33: 083002. doi: 10.11884/HPLPB202133.210066

Uncertainty prediction of crosstalk measurement for multi-conductor transmission lines

doi: 10.11884/HPLPB202133.210066
  • Received Date: 2021-03-05
  • Rev Recd Date: 2021-07-01
  • Available Online: 2021-07-21
  • Publish Date: 2021-08-15
  • Sensitivity analysis of cable crosstalk to uncertain parameters is studied using stochastic reduced order model (SROM), and then the uncertainty of cable crosstalk is predicted. To verify the prediction, a three-conductor transmission line (TL) experiment system is established. Both near end and far end crosstalk (NEXT and FEXT) are tested. Then the measurement uncertainty is deduced according to the standard GB/Z 6113.401—2018/CISPR/TR 16-4-1:2009. Comparing the predicted uncertainty to the measured one, it is found that they have the same variation trends with frequency. Moreover, the measured uncertainty is within the range of the prediction. Therefore, the uncertainty prediction using SROM can be applied to predict the test uncertainty, which is instructive to the crosstalk measurement for both analysis model verification and experimental investigation.
  • loading
  • [1]
    Yuan K, Grassi F, Spadacini G, et al. Reproducing field-to-wire coupling effects in twisted-wire pairs by crosstalk[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(4): 991-1000. doi: 10.1109/TEMC.2017.2752231
    [2]
    郑军奇. EMC电磁兼容设计与测试案例分析[M]. 北京: 电子工业出版社, 2010.

    Zheng Junqi. Electromagnetic compatibility design and test case analysis[M]. Beijing: Publishing House of Electronics Industry, 2010
    [3]
    Dong X, Weng H, Beetner D G, et al. Approximation of worst case crosstalk at high frequencies[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(1): 202-208. doi: 10.1109/TEMC.2010.2081676
    [4]
    单秦. 高速动车组电磁兼容性关键技术研究[D]. 北京: 北京交通大学, 2013: 93-148.

    Shan Qin. Research on key technologies of electromagnetic compatibility for China railway high-speed[D]. Beijing: Beijing Jiaotong University, 2013: 93-148
    [5]
    Grassi F, Abdollahi H, Spadacini G, et al. Radiated immunity test involving crosstalk and enforcing equivalence with field-to-wire coupling[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(1): 66-74. doi: 10.1109/TEMC.2015.2503599
    [6]
    Chabane S, Besnier P, Klingler M. A modified enhanced transmission line theory applied to multiconductor transmission lines[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 1-11. doi: 10.1109/TEMC.2016.2622018
    [7]
    Rotgerink J L, Schippers H, Leferink F. Low-frequency analysis of multiconductor transmission lines for crosstalk design rules[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 61(5): 1-9.
    [8]
    杨清熙, 王庆国, 周星, 等. 有耗地面上架空线缆串扰研究等效电路模型[J]. 强激光与粒子束, 2015, 27:083203. (Yang Qingxi, Wang Qingguo, Zhou Xing, et al. Equivalent circuit for crosstalk of overhead cables on lossy ground[J]. High Power Laser and Particle Beams, 2015, 27: 083203 doi: 10.11884/HPLPB201527.083203
    [9]
    赵翔, 晏奇林, 闫丽萍. 多导体传输线高频场线耦合模型的研究综述[J]. 强激光与粒子束, 2015, 27:120201. (Zhao Xiang, Yan Qilin, Yan Liping. Review of high-frequency field-to-line coupling model of multi-conductor transmission line[J]. High Power Laser and Particle Beams, 2015, 27: 120201 doi: 10.11884/HPLPB201527.120201
    [10]
    叶志红, 廖成, 张敏, 等. 基于时域BLT的多导体传输线串扰响应分析[J]. 强激光与粒子束, 2014, 26:073212. (Ye Zhihong, Liao Cheng, Zhang Min, et al. Analysis of crosstalk responses of multi-conductor transmission lines based on time domain BLT equation[J]. High Power Laser and Particle Beams, 2014, 26: 073212 doi: 10.11884/HPLPB201426.073212
    [11]
    石立华, 张琦, 周颖慧, 等. 线束干扰响应的精简计算模型[J]. 强激光与粒子束, 2013, 25:531-536. (Shi Lihua, Zhang Qi, Zhou Yinghui, et al. Reduced model for disturbance analysis of cable bundles[J]. High Power Laser and Particle Beams, 2013, 25: 531-536 doi: 10.3788/HPLPB20132502.0531
    [12]
    张丹. 高速动车组电磁兼容预测建模方法及其应用研究[D]. 北京: 北京交通大学, 2017: 35-54.

    Zhang Dan. Research on the predicting modeling method of electromagnetic compatibility and its application for EMUs[D]. Beijing: Beijing Jiaotong University, 2017: 35-54
    [13]
    张枭啸. 机载线束串扰及场线耦合计算研究[D]. 南京: 东南大学, 2017: 23-48.

    Zhang Xiaoxiao. Research on calculation of crosstalk and field-to-wire[D]. Nanjing: Southeast University, 2017: 23-48
    [14]
    Paul C R. Solution of the transmission-line equations for three-conductor lines in homogeneous media[J]. IEEE Transactions on Electromagnetic Compatibility, 1978, 20(1): 216-222.
    [15]
    肖培. 机电设备互连线缆电磁干扰建模及计算方法研究[D]. 成都: 电子科技大学, 2019: 40-41.

    Xiao Pei. Study on modeling and calculation method for the electromagnetic interference of interconnection cable in electromechanical equipment[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 40-41
    [16]
    Xiu D. Efficient collocational approach for parametric uncertainty analysis[J]. Communications in Computational Physics, 2007, 2(2): 293-309.
    [17]
    Field R V J, Grigoriu M, Emery J M. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems[J]. Probabilistic Engineering Mechanics, 2015, 41: 60-72. doi: 10.1016/j.probengmech.2015.05.002
    [18]
    刘青, 王晨东, 李湛宇, 等. 埋地管道HEMP响应的不确定度量化[J]. 电工技术学报, 2019, 34(9):1789-1797. (Liu Qing, Wang Chendong, Li Zhanyu, et al. Uncertainty quantification of response of buried pipeline to high-altitude electromagnetic pulse[J]. Transactions of China Electrotechnical Society, 2019, 34(9): 1789-1797
    [19]
    Fei Z, Huang Y, Zhou J, et al. Sensitivity analysis of cable crosstalk to uncertain parameters using stochastic reduced order models[C]//IEEE International Symposium on Electromagnetic Compatibility. 2016: 385-389.
    [20]
    Fei Z, Huang Y, Zhou J, et al. Uncertainty quantification of crosstalk using stochastic reduced order models[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 59(1): 228-239.
    [21]
    李俊辛, 刘强, 闫丽萍, 等. 基于JASMIN的并行CP-FDTD建模与屏蔽效能评估应用[J]. 强激光与粒子束, 2019, 31:053202. (Li Junxin, Liu Qiang, Yan Liping, et al. JASMIN-based parallel CP-FDTD modeling and application to shielding effectiveness prediction[J]. High Power Laser and Particle Beams, 2019, 31: 053202 doi: 10.11884/HPLPB201931.190026
    [22]
    GB/Z 6113.401-2018, 无线电骚扰和抗扰度测量设备和测量方法规范(第4-1部分): 不确定度、统计学和限值建模 标准化EMC试验的不确定度[S].

    GB/Z 6113.401-2018, Specification for radio disturbance and immunity measurement equipment and measurement methods —Part 4-1: Uncertainty, statistics and limit modeling — Uncertainty in standardized EMC tests[S]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views (894) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return