Volume 33 Issue 4
May  2021
Turn off MathJax
Article Contents
Zhang Zhaohui, Wang Guilin, Zhang Zhengwei, et al. Tantalum strength experiments on 10 MA facility[J]. High Power Laser and Particle Beams, 2021, 33: 045001. doi: 10.11884/HPLPB202133.210069
Citation: Zhang Zhaohui, Wang Guilin, Zhang Zhengwei, et al. Tantalum strength experiments on 10 MA facility[J]. High Power Laser and Particle Beams, 2021, 33: 045001. doi: 10.11884/HPLPB202133.210069

Tantalum strength experiments on 10 MA facility

doi: 10.11884/HPLPB202133.210069
  • Received Date: 2021-03-08
  • Rev Recd Date: 2021-03-28
  • Available Online: 2021-04-12
  • Publish Date: 2021-05-02
  • Metal strength research under extreme conditions is of vital importancefor weapons physics and aeromechanics applications. Material’s response has an affinity with microstructure, stress history, pressure and temperature, etc. Magnetically driven isentropic compression as a new experimental technique between quasi-static and impact, has low increased entropy and temperature. Magnetic pressure produced from the current flow in the load electrode compress the sample, which is decided by the load current shape and load configuration. This experimental workwascarried out on a 10 MA facility in CAEP. The 10 MA facility includes 24 modules, which help to control the load current shape in a relative wide range, thereby provides a different ideal isentropic compression experimental platform for millimeter thick and centimeter diameter samplesto be driven with different strain rates. In this paper, based on the characteristics of 10 MA device, the sample loading path was controlled by adjusting the load current waveform. In a certain pressure-strain rate range, the strength of tantalum was experimented. The loading and unloading wave profile velocity history of tantalum samples with different thicknesses was successfully obtained, and the strength data of tantalum under a series of peak pressures were obtained. Compareing the strength results of the multiple material loading platform under different loading paths, the results in this work significantly higher than the strength under shock loading, but lower than the strength under quasi static loading based on the multi-branch confluence strength test technology, more abundant experimental studies on material dynamic characteristics will be carried out in the future.

  • loading
  • [1]
    Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [2]
    莫建军, 王桂吉, 孙承纬, 等. 金属钽的准等熵压缩特性试验研究[C]//第十二届全国实验力学学术会议论文集. 2009.

    Mo Jianjun, Wang Guiji, Sun Chengwei, et al. Experimental study on quasi-isentropic compression characteristics of tantalum[C]//Proceedings of the 12th National Conference on Experimental Mechanics. 2009
    [3]
    张红平, 王桂吉, 李牧, 等. 准等熵压缩下金属钽的屈服强度分析[J]. 高压物理学报, 2011, 25(4):321-326. (Zhang Hongping, Wang Guiji, Li Mu, et al. Yield strength analysis of tantalum in quasi-isentropic compression[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 321-326
    [4]
    Davis J P, Knudson M D. Multi-megabar measurement of the principal quasi-isentrope for tantalum[C]//Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. 2009: 673-676.
    [5]
    Eggert J, Bastea M, Reisman D B, et al. Ramp wave stress-density measurements of Ta and W[J]. AIP Conference Proceedings, 2007, 955(1): 1177-1180.
    [6]
    Asay J R, Ao T, Vogler T J, et al. Yield strength of tantalum for Shockless compression to 18 GPa[J]. Journal of Applied Physics, 2009, 106: 073515. doi: 10.1063/1.3226882
    [7]
    Asay J R, Vogler T J, Ao T, et al. Dynamic yielding of single crystal Ta at strain rates of~5×105/s[J]. Journal of Applied Physics, 2011, 109: 073507. doi: 10.1063/1.3562178
    [8]
    Vogler T J. On measuring the strength of metals at ultrahigh strain rates[J]. Journal of Applied Physics, 2009, 106: 053530. doi: 10.1063/1.3204777
    [9]
    Davis J P, Deeney C, Knudson M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator[J]. Physics of Plasmas, 2005, 12: 056310. doi: 10.1063/1.1871954
    [10]
    Alexander C S, Knudson M D, Hall C A. High accuracy Hugoniot measurements at multi-megabar pressure utilizing the Sandia Z accelerator[J]. Journal of Physics: Conference Series, 2010, 215: 012150. doi: 10.1088/1742-6596/215/1/012150
    [11]
    Trainor R J, Parsons W M, Ballard E O, et al. Overview of the Atlas project[C]//Digest of Technical Papers. 11th IEEE International Pulsed Power Conference (Cat. No. 97CH36127). Baltimore, MD, USA: IEEE, 1997.
    [12]
    王贵林, 李军, 张朝辉, 等. “阳”加速器磁驱动平面飞片实验和速度计算校验[J]. 强激光与粒子束, 2014, 26:015101. (Wang Guilin, Li Jun, Zhang Zhaohui, et al. Experiments and velocity validation of magnetically driven flyer plates on “Yang” accelerator[J]. High Power Laser and Particle Beams, 2014, 26: 015101 doi: 10.3788/HPLPB20142601.15101
    [13]
    王勐, 关永超, 宋盛义, 等. PTS装置分层真空轴向绝缘堆设计[J]. 强激光与粒子束, 2010, 22(4):777-781. (Wang Meng, Guan Yongchao, Song Shengyi, et al. Design of PTS vacuum insulator stack[J]. High Power Laser and Particle Beams, 2010, 22(4): 777-781 doi: 10.3788/HPLPB20102204.0777
    [14]
    王贵林. 磁驱动平面加载实验技术及其在高压物态方程研究中的应用[D]. 合肥: 中国科学技术大学, 2014: 6.

    Wang Guilin. Magnetic loading techniques and its applications in high-pressure EOS[D]. Hefei: University of Science and Technology of China, 2014: 6
    [15]
    王贵林, 郭帅, 沈兆武, 等. 基于聚龙一号装置的超高速飞片发射实验研究进展[J]. 物理学报, 2014, 63:196201. (Wang Guilin, Guo Shuai, Shen Zhaowu, et al. Recent advances in hyper-velocity flyer launch experiments on PTS[J]. Acta Physica Sinica, 2014, 63: 196201 doi: 10.7498/aps.63.196201
    [16]
    Hall C A, Asay J R, Knudson M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J]. Review of Scientific Instruments, 2001, 72(9): 3587-3595. doi: 10.1063/1.1394178
    [17]
    马云, 胡绍楼, 汪小松, 等. 样品-窗口界面运动速度的VISAR测试技术[J]. 高压物理学报, 2003, 17(4):290-294. (Ma Yun, Hu Shaolou, Wang Xiaosong, et al. VISAR measurement on interface velocity between shocked specimen and window[J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 290-294 doi: 10.11858/gywlxb.2003.04.008
    [18]
    Weng Jidong, Wang Xiang, Tao Tianjiong, et al. Optic-microwave mixing velocimeter for superhigh velocity measurement[J]. The Review of Scientific Instruments, 2011, 82: 123114. doi: 10.1063/1.3670403
    [19]
    Dolan D H. Accuracy and precision in photonic Doppler velocimetry[J]. The Review of Scientific Instruments, 2010, 81: 053905. doi: 10.1063/1.3429257
    [20]
    章征伟, 王贵林, 张绍龙, 等. 电作用量在磁驱动固体套筒内爆设计分析中的应用[J]. 物理学报, 2020, 69:050701. (Zhang Zhengwei, Wang Guilin, Zhang Shaolong, et al. Application of electrical action to design and analysis of magnetically driven solid liner implosion[J]. Acta Physica Sinica, 2020, 69: 050701 doi: 10.7498/aps.69.20191690
    [21]
    王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005: 45-50.

    Wang Lili. Foundation of stress waves[J]. 2nd ed. Beijing: National Defence Industry Press, 2005: 45-50
    [22]
    Tucker T J, Toth R P. Sandia National Laboratory Report SAND-75-0041 (New Mexico: Sandia National Laboratory)
    [23]
    王刚华, 王桂吉, 阚明先, 等. CQ-4装置电磁驱动能力分析[J]. 应用力学学报, 2013, 30(6):932-935. (Wang Ganghua, Wang Guiji, Kan Mingxian, et al. Analysis of magnetic drive capability for CQ-4 device[J]. Chinese Journal of Applied Mechanics, 2013, 30(6): 932-935 doi: 10.11776/cjam.30.06.A002
    [24]
    郭帆, 王贵林, 邹文康, 等. 聚龙一号装置磁驱动加载实验的全电路模拟[J]. 强激光与粒子束, 2018, 30:125001. (Guo Fan, Wang Guilin, Zou Wenkang, et al. Full circuit calculation of magnetically driven experiment on PTS facility[J]. High Power Laser and Particle Beams, 2018, 30: 125001 doi: 10.11884/HPLPB201830.180239
    [25]
    Brown J L, Alexander C S, Asay J R, et al. Flow strength of tantalum under ramp compression to 250 GPa[J]. Journal of Applied Physics, 2014, 115: 043530. doi: 10.1063/1.4863463
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (1116) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return