Volume 33 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Cao Xiangchun, Hao Jianhong, Zhao Qiang, et al. Analysis of high-frequency atmospheric windows for terahertz communication between the ground and the satellite[J]. High Power Laser and Particle Beams, 2021, 33: 093003. doi: 10.11884/HPLPB202133.210186
Citation: Cao Xiangchun, Hao Jianhong, Zhao Qiang, et al. Analysis of high-frequency atmospheric windows for terahertz communication between the ground and the satellite[J]. High Power Laser and Particle Beams, 2021, 33: 093003. doi: 10.11884/HPLPB202133.210186

Analysis of high-frequency atmospheric windows for terahertz communication between the ground and the satellite

doi: 10.11884/HPLPB202133.210186
  • Received Date: 2021-06-23
  • Rev Recd Date: 2021-07-02
  • Available Online: 2021-07-20
  • Publish Date: 2021-09-15
  • The large path loss limits the transmission distance of terahertz wireless communication in the atmosphere. To realize long-range transmission of terahertz waves between the ground and the satellite, the first and key step is to find low attenuation atmospheric transparent windows. In this paper, based on the characteristics of atmospheric distribution in China, atmospheric model (am) is used to compute and compare atmospheric absorption attenuation of terahertz waves in two representative cities, and obtain the most ideal ground-based site suitable for terahertz communication between the ground and the satellite in China. Subsequently, by means of real atmospheric data and layered transmission theory, the total path loss of terahertz communication between the ground and the satellite is calculated. Combined with the signal transmit power, antenna gain, Signal-to-Noise Ratio (SNR), noise power and the corresponding path loss threshold, the total usable bandwidth and atmospheric windows in the 10−15 THz frequency band are given. Moreover, by taking the High Altitude Platform as the terahertz communication relay link between the ground and the satellite, the usable atmospheric windows in the 1−15 THz frequency band with antenna gain of 0−100 dBi are given, which provide theoretical and numerical reference for the establishment of ground-satellite communication links and the selection of ground-based sites and communication frequency bands in China.
  • loading
  • [1]
    Xia Qing, Hossain Z, Medley M, et al. A link-layer synchronization and medium access control protocol for terahertz-band communication networks[C]//2015 IEEE Global Communications Conference. 2015: 1-7.
    [2]
    王玉文. 太赫兹辐射大气传输特性研究与信道分析[D]. 绵阳: 中国工程物理研究院, 2017.

    Wang Yuwen. Atmospheric propagation characteristics and capacity analysis of terahertz wave[D]. Mianyang: China Academy of Engineering Physics, 2017).
    [3]
    Akyildiz I F, Jornet J M, Han Chong. Terahertz band: next frontier for wireless communications[J]. Physical Communication, 2014, 12: 16-32. doi: 10.1016/j.phycom.2014.01.006
    [4]
    Shi Shengcai, Paine S, Yao Qijun, et al. Terahertz and far-infrared windows opened at Dome A in Antarctica[J]. Nature Astronomy, 2017, 1: 0001. doi: 10.1038/s41550-016-0001
    [5]
    Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69. doi: 10.1016/j.jqsrt.2017.06.038
    [6]
    Paine S. The am atmospheric model[R]. Smithsonian Astrophysical Observatory, 2012.
    [7]
    Molod A, Takacs L, Suarez M, et al. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2[J]. Geoscientific Model Development, 2015, 8(5): 1339-1356. doi: 10.5194/gmd-8-1339-2015
    [8]
    Jornet J M, Akyildiz I F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band[J]. IEEE Transactions on Wireless Communications, 2011, 10(10): 3211-3221. doi: 10.1109/TWC.2011.081011.100545
    [9]
    Yang Yihong, Mandehgar M, Grischkowsky D R. Broadband THz pulse transmission through the atmosphere[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 264-273. doi: 10.1109/TTHZ.2011.2159554
    [10]
    Wohnsiedler S, Theuer M, Herrmann M, et al. Simulation and experiment of terahertz stand-off detection[C]//Proceedings of SPIE 7215, Terahertz Technology and Applications II. 2009: 101-108.
    [11]
    Saeed A, Gurbuz O, Akkas M A. Terahertz communications at various atmospheric altitudes[J]. Physical Communication, 2020, 41: 101113. doi: 10.1016/j.phycom.2020.101113
    [12]
    Schneider T, Wiatrek A, Preussler S, et al. Link budget analysis for terahertz fixed wireless links[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 250-256. doi: 10.1109/TTHZ.2011.2182118
    [13]
    Han Chong, Bicen A O, Akyildiz I F. Multi-wideband waveform design for distance-adaptive wireless communications in the terahertz band[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 910-922.
    [14]
    Hwu S U, deSilva K B, Jih C T. Terahertz (THz) wireless systems for space applications[C]//2013 IEEE Sensors Applications Symposium Proceedings. 2013: 171-175.
    [15]
    ITU-R S. 1590 FRENCH-2002, Technical and operational characteristics of satellites operating in the range 20-375 THz[S].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article views (1281) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return