Volume 33 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Li Yao, Fan Jieqing, Zhang Fang, et al. Study on outgassing effect of electromagnetic radiation on aluminum film[J]. High Power Laser and Particle Beams, 2021, 33: 123008. doi: 10.11884/HPLPB202133.210191
Citation: Li Yao, Fan Jieqing, Zhang Fang, et al. Study on outgassing effect of electromagnetic radiation on aluminum film[J]. High Power Laser and Particle Beams, 2021, 33: 123008. doi: 10.11884/HPLPB202133.210191

Study on outgassing effect of electromagnetic radiation on aluminum film

doi: 10.11884/HPLPB202133.210191
  • Received Date: 2021-05-20
  • Rev Recd Date: 2021-10-20
  • Available Online: 2021-11-03
  • Publish Date: 2021-12-15
  • To study the electromagnetic radiation effect of the thermal control layer covering the surface of general spacecraft in the space environment, a model of electromagnetic wave irradiated metal aluminum film material was established. The PIC (Particle-in-Cell)-MCC (Monte Carlo collisions) method was adopted to numerically simulate the changes of positive ions and collision ionization electrons under different outgassing densities. The simulation results show that when the gas density on the surface of the aluminum film is small, avalanche ionization will not occur due to the low probability of outgassing collision ionization on the surface of the material. Only when the outgassing density exceeds the threshold, the outgassing collision ionization process on the material surface is strengthened, and avalanche ionization occurs on the surface of the material to generate plasma, which absorbs electromagnetic wave energy, and the total energy of its ions and electrons increases, which may cause damage to the metal aluminum film material.
  • loading
  • [1]
    王浚, 王佩广. 高超声速飞行器一体化防热与热控设计方法[J]. 北京航空航天大学学报, 2006, 32(10):1129-1134. (Wang Jun, Wang Peiguang. Integrated thermal protection and control system design methodology for hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10): 1129-1134 doi: 10.3969/j.issn.1001-5965.2006.10.002
    [2]
    Vaughan J R M. Multipactor[J]. IEEE Transactions on Electron Devices, 1988, 35(7): 1172-1180. doi: 10.1109/16.3387
    [3]
    Kishek R A, Lau Y Y. Multipactor discharge on a dielectric[J]. Physical Review Letters, 1998, 80(1): 193-196. doi: 10.1103/PhysRevLett.80.193
    [4]
    应旭华, 郝建红, 范杰清. 双边二次电子倍增效应分析[J]. 强激光与粒子束, 2009, 21(6):906-910. (Ying Xuhua, Hao Jianhong, Fan Jieqing. Analysis of two-surface multipactor discharge[J]. High Power Laser and Particle Beams, 2009, 21(6): 906-910
    [5]
    黄建国, 韩建伟. 航天器内部充电效应及典型事例分析[J]. 物理学报, 2010, 59(4):2907-2913. (Huang Jianguo, Han Jianwei. Analysis of a typical internal charging induced spacecraft anomaly[J]. Acta Physica Sinica, 2010, 59(4): 2907-2913 doi: 10.7498/aps.59.2907
    [6]
    蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响[J]. 物理学报, 2010, 59(2):1143-1147. (Cai Libing, Wang Jianguo. Effects of the microwave magnetic field and oblique incident microwave on multipactor discharge on a dielectric surface[J]. Acta Physica Sinica, 2010, 59(2): 1143-1147 doi: 10.7498/aps.59.1143
    [7]
    蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究[J]. 物理学报, 2011, 60:025217. (Cai Libing, Wang Jianguo. Numerical simulation of outgassing in the breakdown on dielectric surface irradiated by high power microwave[J]. Acta Physica Sinica, 2011, 60: 025217 doi: 10.7498/aps.60.025217
    [8]
    董烨, 董志伟, 周前红, 等. 释气对介质沿面闪络击穿影响的粒子模拟[J]. 物理学报, 2014, 63:027901. (Dong Ye, Dong Zhiwei, Zhou Qianhong, et al. Particle-in-cell simulation on effect of outgassing on flashover and breakdown on dielectric surface in high-power microwave environment[J]. Acta Physica Sinica, 2014, 63: 027901 doi: 10.7498/aps.63.027901
    [9]
    Forbes R G, Deane J H B. Reformulation of the standard theory of Fowler-Nordheim tunnelling and cold field electron emission[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 463(2687): 2907-2927.
    [10]
    Kishek R A, Lau Y Y, Ang L K, et al. Multipactor discharge on metals and dielectrics: historical review and recent theories[J]. Physics of Plasmas, 1998, 5(5): 2120-2126. doi: 10.1063/1.872883
    [11]
    李小泽, 王建国, 童长江, 等. 充填不同气体相对论返波管特性的PIC-MCC模拟[J]. 物理学报, 2008, 57(7):4613-4622. (Li Xiaoze, Wang Jianguo, Tong Changjiang, et al. PIC-MCC simulations on characteristics of RBWO filled with different gases[J]. Acta Physica Sinica, 2008, 57(7): 4613-4622 doi: 10.7498/aps.57.4613
    [12]
    董烨, 周前红, 董志伟, 等. 高功率微波沿面闪络击穿机制粒子模拟[J]. 强激光与粒子束, 2013, 25(4):950-958. (Dong Ye, Zhou Qianhong, Dong Zhiwei, et al. PIC simulation of mechanism of high power microwave flashover and breakdown on dielectric surface[J]. High Power Laser and Particle Beams, 2013, 25(4): 950-958 doi: 10.3788/HPLPB20132504.0950
    [13]
    Atomic and Molecular Data Unit Activities[DB/OL]. http://www-amdis.iaea.Org/ALADDIN
    [14]
    Vahedi V, Surendra M. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges[J]. Computer Physics Communications, 1995, 87(1/2): 179-198.
    [15]
    Kanaya K, Kawakatsu H. Secondary electron emission due to primary and backscattered electrons[J]. Journal of Physics D:Applied Physics, 1972, 5(9): 1727-1742. doi: 10.1088/0022-3727/5/9/330
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (1216) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return