Volume 33 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Bao Xianfeng, Chen Xiaojie, Li Hanyu, et al. FDTD-based time domain hybrid method and its application in numerical simulation of platform-antenna integrated coupling[J]. High Power Laser and Particle Beams, 2021, 33: 123017. doi: 10.11884/HPLPB202133.210193
Citation: Bao Xianfeng, Chen Xiaojie, Li Hanyu, et al. FDTD-based time domain hybrid method and its application in numerical simulation of platform-antenna integrated coupling[J]. High Power Laser and Particle Beams, 2021, 33: 123017. doi: 10.11884/HPLPB202133.210193

FDTD-based time domain hybrid method and its application in numerical simulation of platform-antenna integrated coupling

doi: 10.11884/HPLPB202133.210193
  • Received Date: 2021-05-21
  • Rev Recd Date: 2021-10-21
  • Available Online: 2021-10-29
  • Publish Date: 2021-12-15
  • Intense electromagnetic pulse has posed a direct threat to dense electronic platforms such as aircraft. Antenna structure is an important coupling channel for intense electromagnetic pulse (EMP) entering the aircraft platform to produce electromagnetic environmental effects. It is of great significance to analyze the electromagnetic coupling response of platform airborne antenna through numerical simulation. The platform-antenna integrated coupling simulation is a typical method to solve multi-scale time-domain electromagnetic calculation problem. The tens meter platform contains hundreds of micro meter microstrip lines, circuit elements and other local fine structures. When the traditional FDTD method is used to simulate this kind of problems, the computational efficiency is very low due to the need of grid division. This paper introduces a time-domain hybrid method, which combines the non-uniform FDTD method with the thin wire FDTD method and the multi grid lumped element FDTD method, thus can effectively reduce the computational overheads. Combined with parallel computing technology, the transient voltage and current response of the antenna port can be calculated quickly. The method is successfully applied to the numerical simulation of UAV platform antenna integrated coupling.
  • loading
  • [1]
    刘成龙. 电磁脉冲对天线系统的耦合效应研究[D]. 南京: 南京理工大学, 2012

    Liu Chenglong. Study on the coupling effect of electromagnetic pulse on antenna system[D]. Nanjing: Nanjing University of Science and Technology, 2012
    [2]
    张昕, 王锋. 电磁脉冲与短波天线耦合特性的研究[J]. 现代电子技术, 2011, 34(5):187-189. (Zhang Xin, Wang Feng. Coupling characteristic of electromagnetic pulse and HF antenna[J]. Modern Electronics Technique, 2011, 34(5): 187-189 doi: 10.3969/j.issn.1004-373X.2011.05.056
    [3]
    郝凤柱, 段泽民, 朱博, 等. 机载天线电磁脉冲耦合特性及其防护试验研究[J]. 电气应用, 2018, 37(5):56-61. (Hao Fengzhu, Duan Zemin, Zhu Bo, et al. Experimental study on electromagnetic pulse coupling characteristics and protection of airborne antenna[J]. Electrotechnical Application, 2018, 37(5): 56-61
    [4]
    朱明达. 电磁脉冲下螺旋天线瞬态响应的仿真研究[J]. 信息技术, 2009(7):156-158. (Zhu Mingda. Simulation of transient responses of helix antenna under an EMP[J]. Information Technology, 2009(7): 156-158 doi: 10.3969/j.issn.1009-2552.2009.07.043
    [5]
    Li Hanyu, Zhou Haijing, Liu Yang, et al. Massively parallel FDTD program JEMS-FDTD and its applications in platform coupling simulation[C]//2014 International Symposium on Electromagnetic Compatibility. 2014: 229-233.
    [6]
    李瀚宇, 周海京, 廖成. 时域全波电磁计算程序JEMS-FDTD在复杂电磁环境研究中的应用[J]. 强激光与粒子束, 2014, 26:073213. (Li Hanyu, Zhou Haijing, Liao Cheng. Application of JEMS-FDTD in complicated electromagnetic environment study[J]. High Power Laser and Particle Beams, 2014, 26: 073213 doi: 10.11884/HPLPB201426.073213
    [7]
    鲍献丰, 李瀚宇, 伍月千, 等. JEMS-FDTD软件在飞机HIRF仿真中的应用[J]. 强激光与粒子束, 2017, 29:103204. (Bao Xianfeng, Li Hanyu, Wu Yueqian, et al. Application of JEMS-FDTD in high intensity radiation field simulation on aircraft[J]. High Power Laser and Particle Beams, 2017, 29: 103204 doi: 10.11884/HPLPB201729.170175
    [8]
    董慧, 李清亮, 闫玉波. 任意方向细导线的FDTD算法[J]. 电波科学学报, 2004, 19(s1):73-75,79. (Dong Hui, Li Qingliang, Yan Yubo. FDTD algorithm for thin wire in any direction[J]. Chinese Journal of Radio Science, 2004, 19(s1): 73-75,79
    [9]
    周永刚, 徐金平, 顾长青, 等. 细导线精确算法在改进的减缩时域有限差分法中的应用[J]. 微波学报, 2005, 21(5):1-4. (Zhou Yonggang, Xu Jinping, Gu Changqing, et al. The accurate sub-cell thin-wire model applied in the improved reduced finite-difference time-domain method[J]. Journal of Microwaves, 2005, 21(5): 1-4
    [10]
    尹志会, 刘建晓, 苏明敏, 等. 一种简化同轴馈电微带天线的时域有限差分法分析[J]. 科学技术与工程, 2013, 13(31):9357-9360. (Yin Zhihui, Liu Jianxiao, Su Mingmin, et al. FDTD analysis of a simplified coaxial feeding microstrip antenna[J]. Science Technology and Engineering, 2013, 13(31): 9357-9360 doi: 10.3969/j.issn.1671-1815.2013.31.038
    [11]
    Agrawal Y, Chandel R. Crosstalk analysis of current-mode signalling-coupled RLC interconnects using FDTD technique[J]. IETE Technical Review, 2016, 33(2): 148-159. doi: 10.1080/02564602.2015.1056258
    [12]
    Demir V. Formulations for modeling voltage sources with RLC impedances in the FDTD method[J]. The Applied Computational Electromagnetics Society Journal, 2016, 31(9): 1020-1027.
    [13]
    Sharma D K, Mittal S, Kaushik B K, et al. Dynamic crosstalk analysis in RLC modeled interconnects using FDTD method[C]//2012 Third International Conference on Computer and Communication Technology. 2012: 326-330.
    [14]
    Ramesh K V, Kaushik B K, Patnaik A. Dynamic crosstalk analysis of CMOS driven RLC interconnects using FDTD method[C]//2013 Usnc-ursi Radio Science Meeting (Joint with AP-S Symposium). 2013: 80.
    [15]
    Kumar S D, Kumar K B, Sharma R K. FDTD based transition time dependent crosstalk analysis for coupled RLC interconnects[J]. Journal of Semiconductors, 2014, 35: 055001. doi: 10.1088/1674-4926/35/5/055001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1052) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return