Volume 33 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Wang Li, Wang Xiaoling, Zhang Hanwei, et al. Theoretical study on transmission characteristics of stimulated Raman scattering in passive fiber with variable core radius[J]. High Power Laser and Particle Beams, 2021, 33: 111011. doi: 10.11884/HPLPB202133.210225
Citation: Wang Li, Wang Xiaoling, Zhang Hanwei, et al. Theoretical study on transmission characteristics of stimulated Raman scattering in passive fiber with variable core radius[J]. High Power Laser and Particle Beams, 2021, 33: 111011. doi: 10.11884/HPLPB202133.210225

Theoretical study on transmission characteristics of stimulated Raman scattering in passive fiber with variable core radius

doi: 10.11884/HPLPB202133.210225
  • Received Date: 2021-06-07
  • Rev Recd Date: 2021-10-20
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-15
  • Tapered fiber has unique advantages in suppressing nonlinear effects because its core radius increases uniformly along the length of the fiber. In this paper, the output spectrum evolution and Raman performance of three different types of passive fibers are simulated and analyzed under the input of single transverse mode Gaussian beam: the passive fibers with constant core radius, linearly increasing radius and nonlinearly increasing core radius, all have the same input core diameter of 50 μm. Under the same conditions, when the input power is 10 kW, the Raman suppression ratio (defined as the difference between the intensity of the signal peak and the Raman peak in the spectrum) of constant type passive fiber is 33.1 dB, while those of the linear type and nonlinear type are 47.0 dB and 48.6 dB, respectively, which are better than that of constant type by 13.9 dB and 15.5 dB; When the input power reaches 17.5 kW, 81.6% of the input energy of the constant type is dissipated or transferred to other wavelengths, while that of linear and nonlinear types is less than 2%, and the output signal optical band energy accounts for 98.1% and 98.9% of the total input energy. The results show that the threshold of stimulated Raman scattering can be effectively improved by using linear or nonlinear passive fiber instead of constant type, and the study can provide a useful reference for the design of high-power fiber combiner and fiber end cap.
  • loading
  • [1]
    Filippov V, Chamorovskii Y, Kerttula J, et al. Double clad tapered fiber for high power applications[J]. Optics Express, 2008, 16(3): 1929-1944. doi: 10.1364/OE.16.001929
    [2]
    Filippov V, Chamorovskii Y, Kerttula J, et al. 600 W power scalable single transverse mode tapered double-clad fiber laser[J]. Optics Express, 2009, 17(3): 1203-1214. doi: 10.1364/OE.17.001203
    [3]
    Filippov V, Kerttula J, Chamorovskii Y, et al. Highly efficient 750 W tapered double-clad ytterbium fiber laser[J]. Optics Express, 2010, 18(12): 12499-12512. doi: 10.1364/OE.18.012499
    [4]
    Kerttula J, Filippov V, Ustimchik V, et al. Mode evolution in long tapered fibers with high tapering ratio[J]. Optics Express, 2012, 20(23): 25461-25470. doi: 10.1364/OE.20.025461
    [5]
    Kerttula J, Filippov V, Chamorovskii Y, et al. Tapered fiber amplifier with high gain and output power[J]. Laser Physics, 2012, 22(11): 1734-1738. doi: 10.1134/S1054660X12110059
    [6]
    Shi Chen, Wang Xiaolin, Zhou Pu, et al. Theoretical study of mode evolution in active long tapered multimode fiber[J]. Optics Express, 2016, 24(17): 19473-19490. doi: 10.1364/OE.24.019473
    [7]
    王小林, 张汉伟, 杨保来, 等. 高功率掺镱光纤振荡器: 研究现状与发展趋势[J]. 中国激光, 2021, 48:0401004. (Wang Xiaolin, Zhang Hanwei, Yang Baolai, et al. High-power ytterbium-doped fiber laser oscillator: current situation and future developments[J]. Chinese Journal of Lasers, 2021, 48: 0401004 doi: 10.3788/CJL202148.0401004
    [8]
    Zeng Lingfa, Xi Xiaoming, Ye Yun, et al. Near-single-mode 3 kW monolithic fiber oscillator based on a longitudinally spindle-shaped Yb-doped fiber[J]. Optics Letters, 2020, 45(20): 5792-5795. doi: 10.1364/OL.404893
    [9]
    奚小明, 杨欢, 曾令筏, 等. 国产纺锤形增益光纤主振荡功率放大器实现5kW输出[J]. 强激光与粒子束, 2021, 33:021001. (Xi Xiaoming, Yang Huan, Zeng Lingfa, et al. 5 kW all-fiber amplifier based on homemade spindle-shaped Yb-doped fiber[J]. High Power Laser and Particle Beams, 2021, 33: 021001
    [10]
    史尘. 高功率长锥形掺镱光纤放大器研究[D]. 长沙: 国防科学技术大学, 2017: 1-21

    Shi Chen. The study of high power long tapered fiber amplifiers[D]. Changsha: National University of Defense Technology, 2017: 1-21
    [11]
    Roy V, Paré C, Labranche B, et al. Yb-doped large mode area tapered fiber with depressed cladding and dopant confinement[C]. Proceedings SPIE 10083 Fiber Lasers XIV: Technology and Systems. 2017: 1008314.
    [12]
    阿戈沃 G P. 非线性光纤光学[M]. 贾东方, 葛春风, 译. 5版. 北京: 电子工业出版社, 2014: 27, 203-206

    Agrawal G P. Nonlinear fiber optics[M]. Jia Dongfang, Ge Chunfeng, trans. 5th ed. Beijing: Publishing House of Electronics Industry, 2014: 27, 203-206
    [13]
    Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering[J]. Applied Optics, 1972, 11(11): 2489-2494. doi: 10.1364/AO.11.002489
    [14]
    欧攀, 贾豫东, 白明, 等. 高等光学仿真(Matlab版)——光波导, 激光[M]. 2版. 北京: 北京航空航天大学出版社, 2014

    Ou Pan, Jia Yudong, Bai Ming, et al. Advanced optical simulation (MATLAB version), optical waveguide and laser[M]. 2nd ed. Beijing: Beihang University Press, 2014
    [15]
    Stolen R H, Gordon J P, Tomlinson W J, et al. Raman response function of silica-core fibers[J]. Journal of the Optical Society of America B, 1989, 6(6): 1159-1166. doi: 10.1364/JOSAB.6.001159
    [16]
    Blow K J, Wood D. Theoretical description of transient stimulated Raman scattering in optical fibers[J]. IEEE Journal of Quantum Electronics, 1989, 25(12): 2665-2673. doi: 10.1109/3.40655
    [17]
    Ye Yun, Lin Xianfeng, Xi Xiaoming, et al. Novel constant-cladding tapered-core ytterbium-doped fiber for high-power fiber laser oscillator[J]. High Power Laser Science and Engineering, 2021, 9: e21. doi: 10.1017/hpl.2021.9
    [18]
    王小林, 史尘, 杨保来, 等. 一种基于锥形光纤的高功率光纤端帽: CN207081848U[P]. 2018-03-09

    Wang Xiaolin, Shi Chen, Yang Baolai, et al. High-power fiber end cap based on tapered fiber: CN207081848U[P]. 2018-03-09
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (702) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return