| Citation: | Sun Hongwei, Hao Jianhong, Zhao Qiang, et al. Effect of antireflection film on performance of monocrystalline silicon solar cell[J]. High Power Laser and Particle Beams, 2021, 33: 123021. doi: 10.11884/HPLPB202133.210240 |
| [1] |
臧子豪, 李晗升, 姜显园, 等. 锡钙钛矿太阳能电池的进展与展望[J]. 物理化学学报, 2021, 37(4):14-25. (Zang Zihao, Li Hansheng, Jiang Xianyuan, et al. Progress and perspective of tin perovskite solar cells[J]. Acta Physico-Chimica Sinica, 2021, 37(4): 14-25
|
| [2] |
李腾飞, 占肖卫. 有机光伏研究进展[J]. 化学学报, 2021, 79(3):257-283. (Li Tengfei, Zhan Xiaowei. Advances in organic photovoltaics[J]. Acta Chimica Sinica, 2021, 79(3): 257-283 doi: 10.6023/A20110502
|
| [3] |
陆静, 刘仁臣, 刘洋. 随机腐蚀结构对薄膜硅太阳能电池效率的影响[C]//第21届全国分子光谱学学术会议暨2020年光谱年会论文集. 2020: 2
Lu Jing, Liu Renchen, Liu Yang. Effect of random corrosion structure on the efficiency of thin film silicon solar sells[C]//21st National Conference on Molecular Spectroscopy and Annual Meeting of Spectrum 2020.2020: 2
|
| [4] |
Sah C T, Noyce R N, Shockley W. Carrier generation and recombination in P-N junctions and P-N junction characteristics[J]. Proceedings of the IRE, 1957, 45(9): 1228-1243. doi: 10.1109/JRPROC.1957.278528
|
| [5] |
Hashmi G, Akand A R, Hoq M, et al. Study of the enhancement of the efficiency of the monocrystalline silicon solar cell by optimizing effective parameters using PC1D simulation[J]. Silicon, 2018, 10(4): 1653-1660. doi: 10.1007/s12633-017-9649-3
|
| [6] |
许伟民, 何湘鄂, 赵红兵, 等. 太阳能电池的原理及种类[J]. 发电设备, 2011, 25(2):137-140. (Xu Weimin, He Xiang’e, Zhao Hongbing, et al. Working principles and type of solar cells[J]. Power Equipment, 2011, 25(2): 137-140 doi: 10.3969/j.issn.1671-086X.2011.02.020
|
| [7] |
张智强, 汪石农. 太阳能电池数学模型的仿真与研究[J]. 电子世界, 2019(16):75-76. (Zhang Zhiqiang, Wang Shinong. Simulation and research on mathematical model of solar cell[J]. Electronics World, 2019(16): 75-76
|
| [8] |
孙园园, 肖华锋, 谢少军. 太阳能电池工程简化模型的参数求取和验证[J]. 电力电子技术, 2009, 43(6):44-46. (Sun Yuanyuan, Xiao Huafeng, Xie Shaojun. Parameter solution and verification of solar cells’ engineering simplified model[J]. Power Electronics, 2009, 43(6): 44-46 doi: 10.3969/j.issn.1000-100X.2009.06.017
|
| [9] |
杨利利. 晶体硅太阳能电池效率异常分析与研究[J]. 电子工业专用设备, 2019, 48(6):1-4,39. (Yang Lili. Research on efficiency abnormality of crystalline silicon solar cells[J]. Equipment for Electronic Products Manufacturing, 2019, 48(6): 1-4,39
|
| [10] |
丁美斌, 娄朝刚, 王琦龙, 等. GaAs量子阱太阳能电池量子效率的研究[J]. 物理学报, 2014, 63:198502. (Ding Meibin, Lou Chaogang, Wang Qilong, et al. Influence of quantum wells on the quantum efficiency of GaAs solar cells[J]. Acta Physica Sinica, 2014, 63: 198502 doi: 10.7498/aps.63.198502
|
| [11] |
Gudovskikh A, Kudryashov D, Baranov A, et al. Impact of interface recombination on quantum efficiency of a-Si: H/c-Si solar cells based on Si wires[J]. Physica Status Solidi, 2021, 218: 2170061. doi: 10.1002/pssa.202170061
|
| [12] |
Yamaguchi M, Zhu L, Akiyama H, et al. Analysis of future generation solar cells and materials[J]. Japanese Journal of Applied Physics, 2018, 57: 04FS03. doi: 10.7567/JJAP.57.04FS03
|
| [13] |
高越, 王宙, 付传起, 等. 氮化硅减反射膜制备工艺对组织结构及折射率影响的研究[J]. 真空科学与技术学报, 2019, 39(6):455-459. (Gao Yue, Wang Zhou, Fu Chuanqi, et al. Synthesis and characterization of silicon nitride antireflective film by pulsed laser deposition[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(6): 455-459
|
| [14] |
秦尤敏, 高华, 张剑. 晶体硅太阳电池减反射膜的研究[J]. 上海有色金属, 2011, 32(4):179-181,191. (Qin Youmin, Gao Hua, Zhang Jian. Investigation on anti-reflection film of crystalline silicon solar cells[J]. Shanghai Nonferrous Metals, 2011, 32(4): 179-181,191 doi: 10.3969/j.issn.1005-2046.2011.04.007
|
| [15] |
Chaneliere C, Autran J L, Devine R A B, et al. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications[J]. Materials Science and Engineering:R:Reports, 1998, 22(6): 269-322. doi: 10.1016/S0927-796X(97)00023-5
|
| [16] |
赵保星. 晶硅太阳电池TiO2陷光薄膜[D]. 长沙: 中南大学, 2012
Zhao Baoxing. The TiO2 light trapping films for solar cells[D]. Changsha: Central South University, 2012
|