Volume 33 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
He Ze, Huang Ning, Wang Peng, et al. Simulation study of full-field X-ray fluorescence imaging with a pinhole camera[J]. High Power Laser and Particle Beams, 2021, 33: 116001. doi: 10.11884/HPLPB202133.210299
Citation: He Ze, Huang Ning, Wang Peng, et al. Simulation study of full-field X-ray fluorescence imaging with a pinhole camera[J]. High Power Laser and Particle Beams, 2021, 33: 116001. doi: 10.11884/HPLPB202133.210299

Simulation study of full-field X-ray fluorescence imaging with a pinhole camera

doi: 10.11884/HPLPB202133.210299
  • Received Date: 2021-07-19
  • Accepted Date: 2021-11-08
  • Rev Recd Date: 2021-10-28
  • Available Online: 2021-11-11
  • Publish Date: 2021-11-15
  • To solve the problem of selecting shape and size of the pinhole in the full-field X-ray fluorescence (XRF) imaging, the Geant4 Monte Carlo simulation software was used to simulate pinholes of 6 different types and 4 different diameters. The effects of the parameters on the spatial resolution which referred to the point spread function and the modulation transfer function were analyzed. The imaging process of different energy fluorescence X-ray plane sources is simulated, and the performance of image processing was analyzed by mean filter and the Richardson iteration method. The simulation results show that the pinhole model of the double conical-hole combined with the straight-hole has better sharpness and isoplanatism of the point spread function, a higher cut-off frequency of modulation transmission function, and better spatial resolution for X-ray of the energy less than 20 keV, which meant it is more suitable for full-field XRF imaging; the algorithm of mean filtering combined with the Richardson iteration performs better in full-field XRF image processing.
  • loading
  • [1]
    Vasin M G Ignatiev Yu V, Lakhtikov A E, et al. Energy-resolved X-ray imaging[J]. Spectrochimica Acta Part B, 2007, 62(6): 648-653.
    [2]
    Walter P, Sarrazin P, Gailhanou M, et al. Full-field XRF instrument for cultural heritage: Application to the study of a Caillebotte painting[J]. X-Ray Spectrometry, 2019, 48(4): 274-280. doi: 10.1002/xrs.2841
    [3]
    Kulow A, Buzanich A G, Reinholz U, et al. Comparison of three reconstruction methods based on deconvolution, iterative algorithm and neural network for X-ray fluorescence imaging with coded aperture optics[J]. J Anal At Spectrom, 2020, 35(7): 1423-1434. doi: 10.1039/D0JA00146E
    [4]
    Tsunemi H, Wada M, Hayashida K, et al. X-ray color movie using the charge-coupled device with a direct X-ray detection method[J]. J Appl Phys, 1991, 30(12A): 3540-3544.
    [5]
    Alfeld M, Janssens K, Sasov A, et al. The use of full-field XRF for simultaneous elemental mapping[C]//Proceedings of AIP Conference. 2010, 1221(1): 111-118.
    [6]
    Romano F P, Altana C, Cosentino L, et al. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution[J]. Spectrochimica Acta Part B, 2013, 86(1): 60-65.
    [7]
    Romano F P, Caliri C, Cosentino L, et al. Macro and micro full field X-ray fluorescence with an X-ray pinhole camera presenting high energy and high spatial resolution[J]. Anal Chem, 2014, 86(21): 10892-10899. doi: 10.1021/ac503263h
    [8]
    Romano F P, Caliri C, Cosentino L, et al. Micro X-ray fluorescence imaging in a tabletop full field-X-ray fluorescence instrument and in a full field-particle induced X-ray emission end station[J]. Anal Chem, 2016, 88(20): 9873-9880. doi: 10.1021/acs.analchem.6b02811
    [9]
    Zhao W, Sakurai K. CCD camera as feasible large-area-size X-ray detector for X-ray fluorescence spectroscopy and imaging[J]. Rev Sci Instrum, 2017, 88: 063703. doi: 10.1063/1.4985149
    [10]
    Chantler C T, Olsen K, Dragoset R A, et al. X-ray form factor, attenuation, and scattering tables[OL]. [2021-11-8].https://www.nist.gov/pml/x-ray-form-factor-attenuation-and-scattering-tables.
    [11]
    姚志明, 段保军, 马继明, 等. 大孔径厚针孔数值模拟研究[J]. 原子能科学技术, 2019, 53(2):379-384. (Yao Zhiming, Duan Baojun, Ma Jiming, et al. Numerical simulation of large thick aperture imaging[J]. Atomic Energy Science and Technology, 2019, 53(2): 379-384 doi: 10.7538/yzk.2018.youxian.0294
    [12]
    余波, 应阳君, 许海波. 中子半影成像的散射中子对点扩散函数的影响[J]. 强激光与粒子束, 2010, 22(11):2714-2718. (Yu Bo, Ying Yangjun, Xu Haibo. Effect of scattered netrons on point spread function in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2010, 22(11): 2714-2718 doi: 10.3788/HPLPB20102211.2714
    [13]
    霍雷, 刘剑利, 马永和. 辐射剂量与防护[M]. 北京: 电子工业出版社, 2015: 98-100

    Huo Lei, Liu Jianli, Ma Yonghe. Radiation dose and protection[M]. Beijing: Publishing House of Electronics Industry, 2015: 98-100
    [14]
    Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826
    [15]
    段泽明, 刘俊, 姜其立, 等. 便携式微束X射线荧光谱仪的研发[J]. 原子能科学技术, 2018, 52(18):2243-2248. (Duan Zeming, Liu Jun, Jiang Qili, et al. Development of portable micro-X-ray fluorescence spectrometer[J]. Atomic Energy Science and Technology, 2018, 52(18): 2243-2248
    [16]
    Richardson W H. Bayesian-based iterative method of image restoration[J]. J Opt Soc Am, 1972, 62(1): 55-59. doi: 10.1364/JOSA.62.000055
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (736) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return