Volume 33 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Hou Shaodong, Yan Peiguang, Ruan Shuangchen. Recent advances in mid-infrared ultrafast fiber laser technology[J]. High Power Laser and Particle Beams, 2021, 33: 111005. doi: 10.11884/HPLPB202133.210320
Citation: Hou Shaodong, Yan Peiguang, Ruan Shuangchen. Recent advances in mid-infrared ultrafast fiber laser technology[J]. High Power Laser and Particle Beams, 2021, 33: 111005. doi: 10.11884/HPLPB202133.210320

Recent advances in mid-infrared ultrafast fiber laser technology

doi: 10.11884/HPLPB202133.210320
  • Received Date: 2021-07-26
  • Rev Recd Date: 2021-10-26
  • Available Online: 2021-11-04
  • Publish Date: 2021-11-15
  • Mid-infrared region ranging from 2.5 μm to 25 μm covers absorption lines of most molecules and multiple atmospheric windows. The ultrafast lasers operating in this waveband have vast applications in many fields. In recent years, significant progress has been made in the area of mid-infrared fiber-based ultrafast lasers in terms of long waveband emission and ultrafast pulse generation, which enables many unexplored reseaches and novel applications. In this paper, we reviewed the development of mid-infrared ultrafast fiber lasers over the last decade. Starting with the fiber materials and the gain medium used for mid-infrared emission, we focused on the current mode-locking methods and their representative progress for mid-infrared fiber lasers including nonlinear polarization rotation, saturable absorbers and frequency shifted feedback technique. Then we briefly discussed the mid-infrared pulse post-modification and typical applications including few-circle pulses and supercontinuum generation. Finally, the critical challenges the mid-infrared ultrafast fiber lasers are currently facing and the possible routines for further development were summarized.

  • loading
  • [1]
    Popa D, Udrea F. Towards integrated mid-infrared gas sensors[J]. Sensors, 2019, 19: 2076. doi: 10.3390/s19092076
    [2]
    Jacques S L. Optical properties of biological tissues: a review[J]. Physics in Medicine & Biology, 2013, 58(11): R37-R61.
    [3]
    Chang Zenghu, Corkum P B, Leone S R. Attosecond optics and technology: progress to date and future prospects [Invited][J]. Journal of the Optical Society of America B, 2016, 33(6): 1081-1097. doi: 10.1364/JOSAB.33.001081
    [4]
    Hudson D D, Antipov S, Li Lizhu, et al. Toward all-fiber supercontinuum spanning the mid-infrared[J]. Optica, 2017, 4(10): 1163-1166. doi: 10.1364/OPTICA.4.001163
    [5]
    Layne C B, Lowdermilk W H, Weber M J. Multiphonon relaxation of rare-earth ions in oxide glasses[J]. Physical Review B, 1977, 16(1): 10-20. doi: 10.1103/PhysRevB.16.10
    [6]
    Wang Zefeng, Yu Fei, Wadsworth W J, et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering[J]. Laser Physics Letters, 2014, 11: 105807. doi: 10.1088/1612-2011/11/10/105807
    [7]
    Ding Wei, Wang Yingying, Gao Shoufei, et al. Recent progress in low-loss hollow-core anti-resonant fibers and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26: 4400312.
    [8]
    Cui Yulong, Huang Wei, Wang Zefeng, et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers[J]. Optica, 2019, 6(8): 951-954. doi: 10.1364/OPTICA.6.000951
    [9]
    Désévédavy F, Strutynski C, Lemière A, et al. Review of tellurite glasses purification issues for mid-IR optical fiber applications[J]. Journal of the American Ceramic Society, 2020, 103(8): 4017-4034. doi: 10.1111/jace.17078
    [10]
    Wang W C, Zhou B, Xu S H, et al. Recent advances in soft optical glass fiber and fiber lasers[J]. Progress in Materials Science, 2019, 101: 90-171. doi: 10.1016/j.pmatsci.2018.11.003
    [11]
    Sojka L, Tang Z, Furniss D, et al. Mid-infrared emission in Tb3+-doped selenide glass fiber[J]. Journal of the Optical Society of America B, 2017, 34(3): A70-A79. doi: 10.1364/JOSAB.34.000A70
    [12]
    Maes F, Fortin V, Poulain S, et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 2018, 5(7): 761-764. doi: 10.1364/OPTICA.5.000761
    [13]
    He Huiyu, Jia Zhixu, Jia Shijie, et al. Ho3+/Pr3+ co-doped AlF3 based glass fibers for efficient ~2.9 μm lasers[J]. IEEE Photonics Technology Letters, 2020, 32(23): 1489-1492.
    [14]
    Bao Qiaoliang, Zhang Han, Wang Yu, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083. doi: 10.1002/adfm.200901007
    [15]
    Fermann M E, Andrejco M J, Silberberg Y, et al. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber[J]. Optics Letters, 1993, 18(11): 894-896. doi: 10.1364/OL.18.000894
    [16]
    Sabert H, Brinkmeyer E. Pulse generation in fiber lasers with frequency shifted feedback[J]. Journal of Lightwave Technology, 1994, 12(8): 1360-1368. doi: 10.1109/50.317522
    [17]
    Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 56-58. doi: 10.1364/OL.13.000056
    [18]
    Fermann M E, Haberl F, Hofer M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 1990, 15(13): 752-754. doi: 10.1364/OL.15.000752
    [19]
    Winful H G, Walton D T. Passive mode locking through nonlinear coupling in a dual-core fiber laser[J]. Optics Letters, 1992, 17(23): 1688-1690. doi: 10.1364/OL.17.001688
    [20]
    Kutz J N, Sandstede B. Theory of passive harmonic mode-locking using waveguide arrays[J]. Optics Express, 2008, 16(2): 636-650. doi: 10.1364/OE.16.000636
    [21]
    Proctor J L, Kutz J N. Passive mode-locking by use of waveguide arrays[J]. Optics Letters, 2005, 30(15): 2013-2015. doi: 10.1364/OL.30.002013
    [22]
    Wang Leilei, Zeng Jianghui, Zhu Liang, et al. All-optical switching in long-period fiber grating with highly nonlinear chalcogenide fibers[J]. Applied Optics, 2018, 57(34): 10044-10050. doi: 10.1364/AO.57.010044
    [23]
    Mamyshev P V. All-optical data regeneration based on self-phase modulation effect[C]//Proceedings of the 24th European Conference on Optical Communication. Madrid: IEEE, 1998: 475-476.
    [24]
    Liu Wu, Liao Ruoyu, Zhao Jun, et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power[J]. Optica, 2019, 6(2): 194-197. doi: 10.1364/OPTICA.6.000194
    [25]
    Chen Tao, Zhang Qiaoli, Zhang Yaping, et al. All-fiber passively mode-locked laser using nonlinear multimode interference of step-index multimode fiber[J]. Photonics Research, 2018, 6(11): 1033-1039. doi: 10.1364/PRJ.6.001033
    [26]
    Zhao Kangjun, Li Yan, Xiao Xiaosheng, et al. Nonlinear multimode interference-based dual-color mode-locked fiber laser[J]. Optics Letters, 2020, 45(7): 1655-1658. doi: 10.1364/OL.388314
    [27]
    Li Huanhuan, Hu Fangming, Tian Ying, et al. Continuously wavelength-tunable mode-locked Tm fiber laser using stretched SMF-GIMF-SMF structure as both saturable absorber and filter[J]. Optics Express, 2019, 27(10): 14437-14446. doi: 10.1364/OE.27.014437
    [28]
    Hofer M, Fermann M E, Haberl F, et al. Mode locking with cross-phase and self-phase modulation[J]. Optics Letters, 1991, 16(7): 502-504. doi: 10.1364/OL.16.000502
    [29]
    Duval S, Bernier M, Fortin V, et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2015, 2(7): 623-626. doi: 10.1364/OPTICA.2.000623
    [30]
    Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 2015, 40(18): 4226-4228. doi: 10.1364/OL.40.004226
    [31]
    Wang Yuchen, Jobin F, Duval S, et al. Ultrafast Dy3+: fluoride fiber laser beyond 3 μm[J]. Optics Letters, 2019, 44(2): 395-398. doi: 10.1364/OL.44.000395
    [32]
    Bawden N, Henderson-Sapir O, Jackson S D, et al. Ultrafast 3.5 µm fiber laser[J]. Optics Letters, 2021, 46(7): 1636-1639. doi: 10.1364/OL.418162
    [33]
    Huang J, Pang M, Jiang F, et al. Sub-two-cycle octave-spanning mid-infrared fiber laser[J]. Optica, 2020, 7(6): 574-579. doi: 10.1364/OPTICA.389143
    [34]
    Woodward R I, Hudson D D, Fuerbach A, et al. Generation of 70-fs pulses at 2.86 μm from a mid-infrared fiber laser[J]. Optics Letters, 2017, 42(23): 4893-4896. doi: 10.1364/OL.42.004893
    [35]
    Qin Zhipeng, Xie Guoqiang, Gu Hongan, et al. Mode-locked 2.8-µm fluoride fiber laser: from soliton to breathing pulse[J]. Advanced Photonics, 2019, 1: 065001.
    [36]
    Huang J, Pang M, Jiang X, et al. Route from single-pulse to multi-pulse states in a mid-infrared soliton fiber laser[J]. Optics Express, 2019, 27(19): 26392-26404. doi: 10.1364/OE.27.026392
    [37]
    Qin Zhipeng, Xie Guoqiang, Zhao Chujun, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 56-59. doi: 10.1364/OL.41.000056
    [38]
    Zhu Gongwen, Zhu Xiushan, Wang Fengqiu, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 7-10. doi: 10.1109/LPT.2015.2478836
    [39]
    Zhu Chunhui, Wang Chunhui, Meng Yafei, et al. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions[J]. Nature Communications, 2017, 8: 14111. doi: 10.1038/ncomms14111
    [40]
    Guo Chunyu, Wei Jincheng, Yan Peiguang, et al. Mode-locked fiber laser at 2.8 μm using a chemical-vapor-deposited WSe2 saturable absorber mirror[J]. Applied Physics Express, 2020, 13: 012013. doi: 10.7567/1882-0786/ab6031
    [41]
    Tang Pinghua, Qin Zhipeng, Liu Jun, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855-4858. doi: 10.1364/OL.40.004855
    [42]
    Selden A C. Pulse transmission through a saturable absorber[J]. British Journal of Applied Physics, 1967, 18(6): 743-748. doi: 10.1088/0508-3443/18/6/306
    [43]
    Matsuda Y, Tahir-Kheli J, Goddard III W A. Definitive band gaps for single-wall carbon nanotubes[J]. The Journal of Physical Chemistry Letters, 2010, 1(19): 2946-2950. doi: 10.1021/jz100889u
    [44]
    Wang Shuxian, Yu Haohai, Zhang Huaijin, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544. doi: 10.1002/adma.201306322
    [45]
    Xu Yijun, Shi Zhe, Shi Xinyao, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications[J]. Nanoscale, 2019, 11(31): 14491-14527. doi: 10.1039/C9NR04348A
    [46]
    Qin Zhipeng, Xie Guoqiang, Ma Jingui, et al. 2.8 μm all-fiber Q-switched and mode-locked lasers with black phosphorus[J]. Photonics Research, 2018, 6(11): 1074-1078. doi: 10.1364/PRJ.6.001074
    [47]
    Bianchi V, Carey T, Viti L, et al. Terahertz saturable absorbers from liquid phase exfoliation of graphite[J]. Nature Communications, 2017, 8: 15763. doi: 10.1038/ncomms15763
    [48]
    Luo Hongyu, Li Siqing, Li Xiaodong, et al. Unlocking the ultrafast potential of gold nanowires for mode-locking in the mid-infrared region[J]. Optics Letters, 2021, 46(7): 1562-1565. doi: 10.1364/OL.419060
    [49]
    Li Jianfeng, Hudson D D, Liu Yong, et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 2012, 37(18): 3747-3749. doi: 10.1364/OL.37.003747
    [50]
    Hönninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. Journal of the Optical Society of America B, 1999, 16(1): 46-56. doi: 10.1364/JOSAB.16.000046
    [51]
    Schibli T R, Thoen E R, Kärtner F X, et al. Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption[J]. Applied Physics B, 2000, 70(1): S41-S49.
    [52]
    Wang Jintao, Wei Jincheng, Liu Wenjun, et al. 2.8 µm passively Q-switched Er: ZBLAN fiber laser with an Sb saturable absorber mirror[J]. Applied Optics, 2020, 59(29): 9165-9168. doi: 10.1364/AO.402227
    [53]
    Wei Chen, Zhu Xiushan, Wang F, et al. Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser[J]. Optics Letters, 2013, 38(17): 3233-3236. doi: 10.1364/OL.38.003233
    [54]
    Li J F, Luo H Y, He Y L, et al. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser[J]. Laser Physics Letters, 2014, 11: 065102. doi: 10.1088/1612-2011/11/6/065102
    [55]
    Li Jianfeng, Luo Hongyu, Wang Lele, et al. 3-µm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 2015, 40(15): 3659-3662. doi: 10.1364/OL.40.003659
    [56]
    Qin Zhipeng, Xie Guoqiang, Zhang Han, et al. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 µm[J]. Optics Express, 2015, 23(19): 24713-24718. doi: 10.1364/OE.23.024713
    [57]
    Shen Yanlong, Wang Yishan, Luan Kunpeng, et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 2016, 6: 26659. doi: 10.1038/srep26659
    [58]
    Tang Pinghua, Wu Man, Wang Qingkai, et al. 2.8-μm Pulsed Er3+: ZBLAN fiber laser modulated by topological insulator[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1573-1576. doi: 10.1109/LPT.2016.2555989
    [59]
    Wei Chen, Luo Hongyu, Zhang Han, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 2016, 13: 105108. doi: 10.1088/1612-2011/13/10/105108
    [60]
    Zhang Tao, Feng Guoying, Zhang Hong, et al. 2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+: ZnSe film[J]. Laser Physics Letters, 2016, 13: 075102. doi: 10.1088/1612-2011/13/7/075102
    [61]
    Ning Shougui, Feng Guoying, Dai Shenyu, et al. Mid-infrared Fe2+: ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser[J]. AIP Advances, 2018, 8: 025121. doi: 10.1063/1.5012847
    [62]
    Yang Lingling, Kang Zhe, Huang Bin, et al. Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser[J]. Optics Letters, 2018, 43(21): 5459-5462. doi: 10.1364/OL.43.005459
    [63]
    Lü Yanjia, Wei Chen, Zhang Han, et al. Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber[J]. Photonics Research, 2019, 7(1): 14-18. doi: 10.1364/PRJ.7.000014
    [64]
    Luo Hongyu, Li Jianfeng, Gao Ying, et al. Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 µm using PbS nanoparticles[J]. Optics Letters, 2019, 44(9): 2322-2325. doi: 10.1364/OL.44.002322
    [65]
    Wang Shiwei, Tang Yulong, Yang Jianlong, et al. MoS2 Q-switched 2.8 μm Er: ZBLAN fiber laser[J]. Laser Physics, 2019, 29: 025101. doi: 10.1088/1555-6611/aaf642
    [66]
    Yi Jun, Du Lin, Li Jie, et al. Unleashing the potential of Ti2CTx MXene as a pulse modulator for mid-infrared fiber lasers[J]. 2D Materials, 2019, 6: 045038. doi: 10.1088/2053-1583/ab39bc
    [67]
    Wei Chen, Chi Hao, Jiang Shurong, et al. Long-term stable platinum diselenide for nanosecond pulse generation in a 3-µm mid-infrared fiber laser[J]. Optics Express, 2020, 28(22): 33758-33766. doi: 10.1364/OE.410110
    [68]
    Yang Jian, Hu Jiyi, Luo Hongyu, et al. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 µm[J]. Photonics Research, 2020, 8(1): 70-77. doi: 10.1364/PRJ.8.000070
    [69]
    Chen Tenghui, Li Zhongjun, Zhang Chunxiang, et al. Indium selenide for Q-switched pulse generation in a mid-infrared fiber laser[J]. Journal of Materials Chemistry C, 2021, 9(18): 5893-5898. doi: 10.1039/D1TC00727K
    [70]
    Sousa J M, Okhotnikov O G. Short pulse generation and control in Er-doped frequency-shifted-feedback fibre lasers[J]. Optics Communications, 2000, 183(1/4): 227-241.
    [71]
    Hu T, Hudson D D, Jackson S D. FM-mode-locked fiber laser operating at 2.9 μm[C]//Proceedings of 2013 Conference on Lasers and Electro-Optics Pacific Rim. Kyoto: IEEE, 2013: 1-2.
    [72]
    Woodward R I, Majewski M R, Jackson S D. Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 μm[J]. APL Photonics, 2018, 3: 116106. doi: 10.1063/1.5045799
    [73]
    Majewski M R, Woodward R I, Jackson S D. Ultrafast mid-infrared fiber laser mode-locked using frequency-shifted feedback[J]. Optics Letters, 2019, 44(7): 1698-1701. doi: 10.1364/OL.44.001698
    [74]
    Henderson-Sapir O, Bawden N, Majewski M R, et al. Mode-locked and tunable fiber laser at the 3.5 µm band using frequency-shifted feedback[J]. Optics Letters, 2020, 45(1): 224-227. doi: 10.1364/OL.45.000224
    [75]
    Brabec T, Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics[J]. Reviews of Modern Physics, 2000, 72(2): 545-591. doi: 10.1103/RevModPhys.72.545
    [76]
    Chernikov S V, Dianov E M, Richardson D J, et al. Soliton pulse compression in dispersion-decreasing fiber[J]. Optics Letters, 1993, 18(7): 476-478. doi: 10.1364/OL.18.000476
    [77]
    Travers J C, Stone J M, Rulkov A B, et al. Optical pulse compression in dispersion decreasing photonic crystal fiber[J]. Optics Express, 2007, 15(20): 13203-13211. doi: 10.1364/OE.15.013203
    [78]
    Nisoli M, De Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique[J]. Applied Physics Letters, 1996, 68(20): 2793-2795. doi: 10.1063/1.116609
    [79]
    Schulte J, Sartorius T, Weitenberg J, et al. Nonlinear pulse compression in a multi-pass cell[J]. Optics Letters, 2016, 41(19): 4511-4514. doi: 10.1364/OL.41.004511
    [80]
    Pelusi M D, Liu Haifeng. Higher order soliton pulse compression in dispersion-decreasing optical fibers[J]. IEEE Journal of Quantum Electronics, 1997, 33(8): 1430-1439. doi: 10.1109/3.605567
    [81]
    Amorim A A, Tognetti M V, Oliveira P, et al. Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers[J]. Optics Letters, 2009, 34(24): 3851-3853. doi: 10.1364/OL.34.003851
    [82]
    Kieu K, Renninger W H, Chong A, et al. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser[J]. Optics Letters, 2009, 34(5): 593-595. doi: 10.1364/OL.34.000593
    [83]
    Dudley J M, Taylor J R. Supercontinuum generation in optical fibers[M]. Cambridge: Cambridge University Press, 2010.
    [84]
    Moon S, Kim D Y. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source[J]. Optics Express, 2006, 14(24): 11575-11584. doi: 10.1364/OE.14.011575
    [85]
    Maria M, Gonzalo I B, Feuchter T, et al. Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography[J]. Optics Letters, 2017, 42(22): 4744-4747. doi: 10.1364/OL.42.004744
    [86]
    Poudel C, Kaminski C F. Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications[J]. Journal of the Optical Society of America B, 2019, 36(2): A139-A153. doi: 10.1364/JOSAB.36.00A139
    [87]
    Mayer A S, Klenner A, Johnson A R, et al. Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides[J]. Optics Express, 2015, 23(12): 15440-15451. doi: 10.1364/OE.23.015440
    [88]
    Kaminski C F, Watt R S, Elder A D, et al. Supercontinuum radiation for applications in chemical sensing and microscopy[J]. Applied Physics B, 2008, 92(3): 367-378. doi: 10.1007/s00340-008-3132-1
    [89]
    Dai Shixun, Wang Yingying, Peng Xuefeng, et al. A review of mid-infrared supercontinuum generation in chalcogenide glass fibers[J]. Applied Sciences, 2018, 8: 707. doi: 10.3390/app8050707
    [90]
    Yu Yi, Gai Xin, Wang Ting, et al. Mid-infrared supercontinuum generation in chalcogenides[J]. Optical Materials Express, 2013, 3(8): 1075-1086. doi: 10.1364/OME.3.001075
    [91]
    Belal M, Xu L, Horak P, et al. Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers[J]. Optics Letters, 2015, 40(10): 2237-2240. doi: 10.1364/OL.40.002237
    [92]
    Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm[C]//Proceedings of SPIE 8898, Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems. Dresden: SPIE, 2013: 889808.
    [93]
    Wang Yingying, Dai Shixun. Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review[J]. PhotoniX, 2021, 2: 9. doi: 10.1186/s43074-021-00031-3
    [94]
    Marandi A, Rudy C W, Plotnichenko V G, et al. Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm[J]. Optics Express, 2012, 20(22): 24218-24225. doi: 10.1364/OE.20.024218
    [95]
    Møller U, Yu Yi, Kubat I, et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber[J]. Optics Express, 2015, 23(3): 3282-3291. doi: 10.1364/OE.23.003282
    [96]
    Corwin K L, Newbury N R, Dudley J M, et al. Fundamental noise limitations to supercontinuum generation in microstructure fiber[J]. Physical Review Letters, 2003, 90: 113904. doi: 10.1103/PhysRevLett.90.113904
    [97]
    Starecki F, Braud A, Abdellaoui N, et al. 7 to 8 µm emission from Sm3+ doped selenide fibers[J]. Optics Express, 2018, 26(20): 26462-26469. doi: 10.1364/OE.26.026462
    [98]
    Crane R W, Sójka Ł, Furniss D, et al. Experimental photoluminescence and lifetimes at wavelengths including beyond 7 microns in Sm3+-doped selenide-chalcogenide glass fibers[J]. Optics Express, 2020, 28(8): 12373-12384. doi: 10.1364/OE.383033
    [99]
    Bernier M, Faucher D, Vallée R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm[J]. Optics Letters, 2007, 32(5): 454-456. doi: 10.1364/OL.32.000454
    [100]
    Bharathan G, Fernandez T T, Ams M, et al. Femtosecond laser direct-written fiber Bragg gratings with high reflectivity and low loss at wavelengths beyond 4 µm[J]. Optics Letters, 2020, 45(15): 4316-4319. doi: 10.1364/OL.399329
    [101]
    Bharathan G, Fernandez T T, Ams M, et al. Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss[J]. Optics Letters, 2019, 44(2): 423-426. doi: 10.1364/OL.44.000423
    [102]
    Aydin Y O, Maes F, Fortin V, et al. Endcapping of high-power 3 µm fiber lasers[J]. Optics Express, 2019, 27(15): 20659-20669. doi: 10.1364/OE.27.020659
    [103]
    Magnan-Saucier S, Duval S, Matte-Breton C, et al. Fuseless side-pump combiner for efficient fluoride-based double-clad fiber pumping[J]. Optics Letters, 2020, 45(20): 5828-5831. doi: 10.1364/OL.409174
    [104]
    Aydin Y O, Fortin V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545. doi: 10.1364/OL.43.004542
    [105]
    Liu Zhanwei, Ziegler Z M, Wright L G, et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 2017, 4(6): 649-654. doi: 10.1364/OPTICA.4.000649
    [106]
    Repgen P, Schuhbauer B, Hinkelmann M, et al. Mode-locked pulses from a Thulium-doped fiber Mamyshev oscillator[J]. Optics Express, 2020, 28(9): 13837-13844. doi: 10.1364/OE.391640
    [107]
    Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 2017, 358(6359): 94-97. doi: 10.1126/science.aao0831
    [108]
    Wright L G, Sidorenko P, Pourbeyram H, et al. Mechanisms of spatiotemporal mode-locking[J]. Nature Physics, 2020, 16(5): 565-570. doi: 10.1038/s41567-020-0784-1
    [109]
    Teğin U, Kakkava E, Rahmani B, et al. Spatiotemporal self-similar fiber laser[J]. Optica, 2019, 6(11): 1412-1415. doi: 10.1364/OPTICA.6.001412
    [110]
    Dai Chuansheng, Dong Zhipeng, Lin Jiaqiang, et al. Self-cleaning effect in an all-fiber spatiotemporal mode-locked laser based on graded-index multimode fiber[J]. Optik, 2021, 243: 167487. doi: 10.1016/j.ijleo.2021.167487
    [111]
    Blanco-Redondo A, de Sterke C M, Sipe J E, et al. Pure-quartic solitons[J]. Nature Communications, 2016, 7: 10427. doi: 10.1038/ncomms10427
    [112]
    Runge A F J, Hudson D D, Tam K K K, et al. The pure-quartic soliton laser[J]. Nature Photonics, 2020, 14(8): 492-497. doi: 10.1038/s41566-020-0629-6
    [113]
    Runge A F J, Hudson D D, Tam K K K, et al. High-order dispersion solitons in mode-locked lasers[C]//Proceedings of CLEO: QELS_Fundamental Science 2020. Washington: Optical Society of America, 2020: FTh1A. 1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (1994) PDF downloads(260) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return