Volume 33 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Yang Hao, Yan Eryan, Nie Yong, et al. Statistical characteristics of S-band microwave pulse breakdown time in free space[J]. High Power Laser and Particle Beams, 2021, 33: 123013. doi: 10.11884/HPLPB202133.210365
Citation: Yang Hao, Yan Eryan, Nie Yong, et al. Statistical characteristics of S-band microwave pulse breakdown time in free space[J]. High Power Laser and Particle Beams, 2021, 33: 123013. doi: 10.11884/HPLPB202133.210365

Statistical characteristics of S-band microwave pulse breakdown time in free space

doi: 10.11884/HPLPB202133.210365
  • Received Date: 2021-08-25
  • Rev Recd Date: 2021-10-28
  • Available Online: 2021-11-03
  • Publish Date: 2021-12-15
  • In the vicinity of atmospheric breakdown threshold, microwave pulse breakdown discharge becomes a probabilistic problem, which is closely related to breakdown time. When atmospheric breakdown occurs, the transmission pulse width and peak power will be shortened. The development of high power microwave technology is severely restricted by the hazards. To study the breakdown problem in high power microwave atmospheric transmission, the probability distribution curves of breakdown time in different processes are compared, and the effects of ionization rate and seed electron generation rate on breakdown time are discussed. The breakdown process of free space microwave was experimentally studied using S-band high power microwave pulse source. The breakdown time of plasma was monitored by photomultiplier tube, and a series of experiments were carried out in the presence or absence of cesium 137 seed electron source. The results show that increasing the seed electron generation rate is a more effective method to increase the pulse breakdown probability. In the process of repetition frequency, if there is cumulative effect, the breakdown delay time probability distribution curve will move to the left and tend to be stable. And the gas after breakdown will be easy to breakdown again in a short time.
  • loading
  • [1]
    Barker R, Edi S. High power microwave source and technology[M]. Beijing: Tsinghua University Press, 2005: 154-158.
    [2]
    杨浩, 闫二艳, 郑强林, 等. 临近空间高功率微波辐照放电试验技术[J]. 强激光与粒子束, 2019, 31:103216. (Yang Hao, Yan Eryan, Zheng Qianglin, et al. Examination research of high power microwave irradiation discharge in near space[J]. High Power Laser and Particle Beams, 2019, 31: 103216 doi: 10.11884/HPLPB201931.190151
    [3]
    Sprangle P, Hafizi B, Milchberg H, et al. Active remote detection of radioactivity based on electromagnetic signatures[J]. Physics of Plasmas, 2014, 21: 013103. doi: 10.1063/1.4861633
    [4]
    Isaacs J, Miao Chenlong, Sprangle P. Remote monostatic detection of radioactive material by laser-induced breakdown[J]. Physics of Plasmas, 2016, 23: 033507. doi: 10.1063/1.4943404
    [5]
    Nusinovich G S, Pu Ruifeng, Antonsen Jr T M, et al. Development of THz-range gyrotrons for detection of concealed radioactive materials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 380-402. doi: 10.1007/s10762-010-9708-y
    [6]
    Nusinovich G S, Sprangle P, Semenov V E, et al. On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials[J]. Journal of Applied Physics, 2012, 111: 124912. doi: 10.1063/1.4730959
    [7]
    Dorozhkina D, Semenov V, Olsson T, et al. Investigations of time delays in microwave breakdown initiation[J]. Physics of Plasmas, 2006, 13: 013506. doi: 10.1063/1.2158696
    [8]
    Foster J, Krompholz H, Neuber A. Investigation of the delay time distribution of high power microwave surface flashover[J]. Physics of Plasmas, 2011, 18: 013502. doi: 10.1063/1.3534823
    [9]
    Kim D, Yu D, Sawant A, et al. Remote detection of radioactive material using high-power pulsed electromagnetic radiation[J]. Nature Communications, 2017, 8: 15394. doi: 10.1038/ncomms15394
    [10]
    魏进进, 周东方, 余道杰, 等. 高功率微波作用下O离子解吸附产生种子电子过程[J]. 物理学报, 2016, 65:055202. (Wei Jinjin, Zhou Dongfang, Yu Daojie, et al. Seed electron production from O detachment in high power microwave air breakdown[J]. Acta Physica Sinica, 2016, 65: 055202 doi: 10.7498/aps.65.055202
    [11]
    Cook A M, Hummelt J S, Shapiro M A, et al. Measurements of electron avalanche formation time in W-band microwave air breakdown[J]. Physics of Plasmas, 2011, 18: 080707. doi: 10.1063/1.3626383
    [12]
    Edmiston G, Krile J, Neuber A, et al. High-power microwave surface flashover of a gas–dielectric interface at 90–760 torr[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1782-1788. doi: 10.1109/TPS.2006.883392
    [13]
    魏进进, 周东方. 高功率微波脉冲大气击穿概率研究[J]. 强激光与粒子束, 2014, 26:063003. (Wei Jinjin, Zhou Dongfang. Probability distribution of high power microwave pulse breakdown in air[J]. High Power Laser and Particle Beams, 2014, 26: 063003 doi: 10.11884/HPLPB201426.063003
    [14]
    杨浩, 闫二艳, 郑强林, 等. 一种准光反射聚焦微波放电大气等离子体装置[J]. 强激光与粒子束, 2019, 31:053002. (Yang Hao, Yan Eryan, Zheng Qianglin, et al. A microwave plasma system with quasi optical focusing reflector[J]. High Power Laser and Particle Beams, 2019, 31: 053002 doi: 10.11884/HPLPB201931.180350
    [15]
    赵刚, 闫二艳, 陈朝阳, 等. 高功率微波大气击穿阈值分析及实验[J]. 强激光与粒子束, 2013, 25(s1):111-114. (Zhao Gang, Yan Eryan, Chen Chaoyang, et al. Analysis and experimental study on threshold of air breakdown by high power microwave[J]. High Power Laser and Particle Beams, 2013, 25(s1): 111-114
    [16]
    Hidaka Y, Choi E M, Mastovsky I, et al. Imaging of atmospheric air breakdown caused by a high-power 110-GHz pulsed Gaussian beam[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 936-937. doi: 10.1109/TPS.2008.924612
    [17]
    Zhou Qianhong, Dong Zhiwei. Modeling study on pressure dependence of plasma structure and formation in 110 GHz microwave air breakdown[J]. Applied Physics Letters, 2011, 98: 161504. doi: 10.1063/1.3583452
    [18]
    Cook A, Shapiro M, Temkin R. Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz[J]. Applied Physics Letters, 2010, 97: 011504. doi: 10.1063/1.3462320
    [19]
    Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14(4): 722-733. doi: 10.1088/0963-0252/14/4/011
    [20]
    Phelps A V, Pitchford L C. Anisotropic scattering of electrons by N2 and its effect on electron transport[J]. Physical Review A, 1985, 31(5): 2932-2949. doi: 10.1103/PhysRevA.31.2932
    [21]
    SIGLO database[EB/OL]. [2013-06-04]. http://www.lxcat.laplace.univ-tlse.fr.
    [22]
    Lawton S A, Phelps A V. Excitation of the b1Σ+g state of O2 by low energy electrons[J]. The Journal of Chemical Physics, 1978, 69(3): 1055-1068. doi: 10.1063/1.436700
    [23]
    PHELPS database[EB/OL]. http://www.lxcat.laplace.univ-tlse.fr, retrieved June 4, 2013NOTE: 3 body attachment cross section are normalized to gas density in units of cm.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (1054) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return