| Citation: | Yang Hao, Yan Eryan, Nie Yong, et al. Statistical characteristics of S-band microwave pulse breakdown time in free space[J]. High Power Laser and Particle Beams, 2021, 33: 123013. doi: 10.11884/HPLPB202133.210365 |
| [1] |
Barker R, Edi S. High power microwave source and technology[M]. Beijing: Tsinghua University Press, 2005: 154-158.
|
| [2] |
杨浩, 闫二艳, 郑强林, 等. 临近空间高功率微波辐照放电试验技术[J]. 强激光与粒子束, 2019, 31:103216. (Yang Hao, Yan Eryan, Zheng Qianglin, et al. Examination research of high power microwave irradiation discharge in near space[J]. High Power Laser and Particle Beams, 2019, 31: 103216 doi: 10.11884/HPLPB201931.190151
|
| [3] |
Sprangle P, Hafizi B, Milchberg H, et al. Active remote detection of radioactivity based on electromagnetic signatures[J]. Physics of Plasmas, 2014, 21: 013103. doi: 10.1063/1.4861633
|
| [4] |
Isaacs J, Miao Chenlong, Sprangle P. Remote monostatic detection of radioactive material by laser-induced breakdown[J]. Physics of Plasmas, 2016, 23: 033507. doi: 10.1063/1.4943404
|
| [5] |
Nusinovich G S, Pu Ruifeng, Antonsen Jr T M, et al. Development of THz-range gyrotrons for detection of concealed radioactive materials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 380-402. doi: 10.1007/s10762-010-9708-y
|
| [6] |
Nusinovich G S, Sprangle P, Semenov V E, et al. On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials[J]. Journal of Applied Physics, 2012, 111: 124912. doi: 10.1063/1.4730959
|
| [7] |
Dorozhkina D, Semenov V, Olsson T, et al. Investigations of time delays in microwave breakdown initiation[J]. Physics of Plasmas, 2006, 13: 013506. doi: 10.1063/1.2158696
|
| [8] |
Foster J, Krompholz H, Neuber A. Investigation of the delay time distribution of high power microwave surface flashover[J]. Physics of Plasmas, 2011, 18: 013502. doi: 10.1063/1.3534823
|
| [9] |
Kim D, Yu D, Sawant A, et al. Remote detection of radioactive material using high-power pulsed electromagnetic radiation[J]. Nature Communications, 2017, 8: 15394. doi: 10.1038/ncomms15394
|
| [10] |
魏进进, 周东方, 余道杰, 等. 高功率微波作用下O–离子解吸附产生种子电子过程[J]. 物理学报, 2016, 65:055202. (Wei Jinjin, Zhou Dongfang, Yu Daojie, et al. Seed electron production from O– detachment in high power microwave air breakdown[J]. Acta Physica Sinica, 2016, 65: 055202 doi: 10.7498/aps.65.055202
|
| [11] |
Cook A M, Hummelt J S, Shapiro M A, et al. Measurements of electron avalanche formation time in W-band microwave air breakdown[J]. Physics of Plasmas, 2011, 18: 080707. doi: 10.1063/1.3626383
|
| [12] |
Edmiston G, Krile J, Neuber A, et al. High-power microwave surface flashover of a gas–dielectric interface at 90–760 torr[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1782-1788. doi: 10.1109/TPS.2006.883392
|
| [13] |
魏进进, 周东方. 高功率微波脉冲大气击穿概率研究[J]. 强激光与粒子束, 2014, 26:063003. (Wei Jinjin, Zhou Dongfang. Probability distribution of high power microwave pulse breakdown in air[J]. High Power Laser and Particle Beams, 2014, 26: 063003 doi: 10.11884/HPLPB201426.063003
|
| [14] |
杨浩, 闫二艳, 郑强林, 等. 一种准光反射聚焦微波放电大气等离子体装置[J]. 强激光与粒子束, 2019, 31:053002. (Yang Hao, Yan Eryan, Zheng Qianglin, et al. A microwave plasma system with quasi optical focusing reflector[J]. High Power Laser and Particle Beams, 2019, 31: 053002 doi: 10.11884/HPLPB201931.180350
|
| [15] |
赵刚, 闫二艳, 陈朝阳, 等. 高功率微波大气击穿阈值分析及实验[J]. 强激光与粒子束, 2013, 25(s1):111-114. (Zhao Gang, Yan Eryan, Chen Chaoyang, et al. Analysis and experimental study on threshold of air breakdown by high power microwave[J]. High Power Laser and Particle Beams, 2013, 25(s1): 111-114
|
| [16] |
Hidaka Y, Choi E M, Mastovsky I, et al. Imaging of atmospheric air breakdown caused by a high-power 110-GHz pulsed Gaussian beam[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 936-937. doi: 10.1109/TPS.2008.924612
|
| [17] |
Zhou Qianhong, Dong Zhiwei. Modeling study on pressure dependence of plasma structure and formation in 110 GHz microwave air breakdown[J]. Applied Physics Letters, 2011, 98: 161504. doi: 10.1063/1.3583452
|
| [18] |
Cook A, Shapiro M, Temkin R. Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz[J]. Applied Physics Letters, 2010, 97: 011504. doi: 10.1063/1.3462320
|
| [19] |
Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14(4): 722-733. doi: 10.1088/0963-0252/14/4/011
|
| [20] |
Phelps A V, Pitchford L C. Anisotropic scattering of electrons by N2 and its effect on electron transport[J]. Physical Review A, 1985, 31(5): 2932-2949. doi: 10.1103/PhysRevA.31.2932
|
| [21] |
SIGLO database[EB/OL]. [2013-06-04]. http://www.lxcat.laplace.univ-tlse.fr.
|
| [22] |
Lawton S A, Phelps A V. Excitation of the b 1Σ+g state of O2 by low energy electrons[J]. The Journal of Chemical Physics, 1978, 69(3): 1055-1068. doi: 10.1063/1.436700
|
| [23] |
PHELPS database[EB/OL]. http://www.lxcat.laplace.univ-tlse.fr, retrieved June 4, 2013NOTE: 3 body attachment cross section are normalized to gas density in units of cm.
|