Volume 33 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Ding Xiangmei, Zhong Lehai, Dong Jingting, et al. Development of analog temperature control and detection system for distributed feedback laser[J]. High Power Laser and Particle Beams, 2021, 33: 111014. doi: 10.11884/HPLPB202133.210381
Citation: Ding Xiangmei, Zhong Lehai, Dong Jingting, et al. Development of analog temperature control and detection system for distributed feedback laser[J]. High Power Laser and Particle Beams, 2021, 33: 111014. doi: 10.11884/HPLPB202133.210381

Development of analog temperature control and detection system for distributed feedback laser

doi: 10.11884/HPLPB202133.210381
  • Received Date: 2021-08-29
  • Rev Recd Date: 2021-11-08
  • Available Online: 2021-11-16
  • Publish Date: 2021-11-15
  • Temperature has an important influence on the performance index and working life of distributed feedback (DFB) laser. Aiming at the laser application in a wide temperature range, the research status and trend of laser temperature control system are analyzed, and the design principle is given. A simulated temperature control and detection system of DFB laser is developed by using linear drive and PID closed-loop control method and simulator, and the system is used to verify the 1550 nm DFB laser. The results show that the system could work for a long time (≥2 h) in the full temperature range of −55 ℃−70 ℃, the working state of the laser was stable, and the central wavelength did not drift. The temperature control precision of the system varies with the temperature range of the working environment. It can reach ±0.02 ℃ at room temperature within ±0.8 ℃ in the full temperature range, and the tracking error is less than ±0.5 dB. Compared with the traditional laser temperature control system, the system has wider working temperature range, higher control precision, smaller volume, and lower cost, being simple and reliable. For the application of DFB laser with strict temperature environment requirements, it has important engineering practical significance.
  • loading
  • [1]
    穆叶, 胡天立, 陈晨, 等. 采用模拟PID控制的DFB激光器温度控制系统研制[J]. 红外与激光工程, 2019, 48:0405001. (Mu Ye, Hu Tianli, Chen Chen, et al. Development of temperature control system of DFB laser using analog PID control[J]. Infrared and Laser Engineering, 2019, 48: 0405001 doi: 10.3788/IRLA201948.0405001
    [2]
    胡杨, 张亚军, 于锦泉. 用于半导体激光器的温控电路设计[J]. 红外与激光工程, 2010, 39(5):839-842. (Hu Yang, Zhang Yajun, Yu Jinquan. Design of temperature control circuit for laser diode[J]. Infrared and Laser Engineering, 2010, 39(5): 839-842 doi: 10.3969/j.issn.1007-2276.2010.05.012
    [3]
    杨鹏, 胡业荣, 王贵山, 等. 温度对半导体激光器退化的影响[J]. 国防科技大学学报, 2020, 42(1):45-50. (Yang Peng, Hu Yerong, Wang Guishan, et al. Impact of temperature on degradations of laser diode[J]. Journal of National University of Defense Technology, 2020, 42(1): 45-50 doi: 10.11887/j.cn.202001007
    [4]
    陈晨, 党敬民, 黄渐强, 等. 高稳定、强鲁棒性DFB激光器温度控制系统[J]. 吉林大学学报(工学版), 2013, 43(4):1004-1010. (Chen Chen, Dang Jingmin, Huang Jianqiang, et al. DFB laser temperature control system with high stability and strong robustness[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(4): 1004-1010
    [5]
    李江澜, 石云波, 赵鹏飞, 等. TEC的高精度半导体激光器温控设计[J]. 红外与激光工程, 2014, 43(6):1745-1749. (Li Jianglan, Shi Yunbo, Zhao Pengfei, et al. High precision thermostat system with TEC for laser diode[J]. Infrared and Laser Engineering, 2014, 43(6): 1745-1749 doi: 10.3969/j.issn.1007-2276.2014.06.009
    [6]
    夏金宝, 刘兆军, 张飒飒, 等. 快速半导体激光器温度控制系统设计[J]. 红外与激光工程, 2015, 44(7):1991-1995. (Xia Jinbao, Liu Zhaojun, Zhang Sasa, et al. Design of semiconductor laser quick temperature control system[J]. Infrared and Laser Engineering, 2015, 44(7): 1991-1995 doi: 10.3969/j.issn.1007-2276.2015.07.005
    [7]
    鲍梦. 模糊理论和神经网络的激光器温控系统[J]. 激光杂志, 2017, 38(10):123-126. (Bao Meng. Laser temperature control system based on fuzzy theory and neural network[J]. Laser Journal, 2017, 38(10): 123-126
    [8]
    刘熙明, 魏旭, 窦立刚. 激光系统中半导体激光器温度稳定系统研究与设计[J]. 强激光与粒子束, 2019, 31:021002. (Liu Ximing, Wei Xu, Dou Ligang. Research and design of semiconductor laser temperature stabilization system in laser system[J]. High Power Laser and Particle Beams, 2019, 31: 021002 doi: 10.11884/HPLPB201931.180335
    [9]
    刘云芳, 张晓, 李建伟. 模拟PID电路参数自整定温控系统设计[J]. 低温工程, 2013(2):68-72. (Liu Yunfang, Zhang Xiao, Li Jianwei. Design of analog PID circuit system with parameter auto-tuning[J]. Cryogenics, 2013(2): 68-72 doi: 10.3969/j.issn.1000-6516.2013.02.013
    [10]
    GB/T 21548-2008, 光通信用高速直接调制半导体激光器的测量方法[S]

    GB/T 21548-2008, 光通信用高速直接调制半导体激光器的测量方法[S]. (GB/T 21548-2008, Methods of measurement of the high speed semiconductor lasers directly modulated for optical fiber communication systems[S]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (715) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return