Volume 34 Issue 4
Mar.  2022
Turn off MathJax
Article Contents
Tuo Huanxiang, Sun Baogen, Luo Qing, et al. Design and simulation of the coupler of single resonant cavity bunch length monitor[J]. High Power Laser and Particle Beams, 2022, 34: 044002. doi: 10.11884/HPLPB202234.210261
Citation: Tuo Huanxiang, Sun Baogen, Luo Qing, et al. Design and simulation of the coupler of single resonant cavity bunch length monitor[J]. High Power Laser and Particle Beams, 2022, 34: 044002. doi: 10.11884/HPLPB202234.210261

Design and simulation of the coupler of single resonant cavity bunch length monitor

doi: 10.11884/HPLPB202234.210261
  • Received Date: 2021-07-08
  • Accepted Date: 2022-01-04
  • Rev Recd Date: 2021-12-25
  • Available Online: 2022-01-08
  • Publish Date: 2022-03-19
  • The single-cavity bunch length monitor uses two eigenmodes in the resonant cavity to measure the bunch length in the order of picoseconds. The key is how to couple and extract two modes of different frequencies without interfering with each other. To solve this problem, based on the theory of low-pass and band-pass filters, a coaxial filter coupling structure and a diaphragm-loaded waveguide filter structure are proposed. The filters are modeled and simulated in CST Microwave Studio to obtain S parameters. In order to test the effect of the coupler, a bunch length monitor with the coupling structure is designed. According to the beam characteristics of the National Synchrotron Radiation Laboratory based on the tunable infrared laser energy chemistry research large-scale experimental device (FELiChEM), a beam simulation is performed on the designed monitor in CST. The simulation results show that the coupler can realize the coupling of specific modes and effectively reduce the interference of other modes. The resonant cavity monitor adopting the coaxial filter and the diaphragm-loaded waveguide filter can achieve high-precision measurement of the bunch length of the FELiChEM, and the measurement error is less than 2%.
  • loading
  • [1]
    Li Heting, Jia Qika, Zhang Shangcai, et al. Design of FELiChEM, the first infrared free-electron laser user facility in China[J]. Chinese Physics C, 2017, 41: 018102. doi: 10.1088/1674-1137/41/1/018102
    [2]
    王岍. 基于谐振腔的直线加速器束团长度诊断技术研究[D]. 合肥: 中国科学技术大学, 2020

    Wang Qian. Study of the cavity-based bunch length diagnostic technology for linac[D]. Hefei: University of Science and Technology of China, 2020
    [3]
    Chen Jian, Leng Yongbin, Yu Luyang, et al. Beam test results of high Q CBPM prototype for SXFEL[J]. Nuclear Science and Techniques, 2017, 28: 51. doi: 10.1007/s41365-017-0195-x
    [4]
    曹珊珊, 冷用斌, 袁任贤, 等. 基于双腔探头的流强精确测量[J]. 核技术, 2019, 42:040101. (Cao Shanshan, Leng Yongbin, Yuan Renxian, et al. Study on precise bunch current measurement based on dual cavity monitor[J]. Nuclear Techniques, 2019, 42: 040101 doi: 10.11889/j.0253-3219.2019.hjs.42.040101
    [5]
    王岍, 罗箐, 孙葆根. 单谐振腔束团长度监测器的设计与仿真[J]. 强激光与粒子束, 2017, 29:115101. (Wang Qian, Luo Qing, Sun Baogen. Design and simulation of a bunch length monitor for linac based on single cavity[J]. High Power Laser and Particle Beams, 2017, 29: 115101 doi: 10.11884/HPLPB201729.170258
    [6]
    Guo Jiang, Zhou Zeran, Luo Qing, et al. Design and simulation of TM020 cavity bunch length monitor[J]. High Power Laser and Particle Beams, 2016, 28: 095104.
    [7]
    裴元吉. 电子直线加速器设计基础[M]. 北京: 科学出版社, 2013

    Pei Yuanji. Basics of electron linear accelerator design[M]. Beijing: Science Press, 2013
    [8]
    Roberts B, Mammei R R, Poelker M, et al. Compact noninvasive electron bunch-length monitor[J]. Physical Review Accelerators and Beams, 2012, 15: 122802. doi: 10.1103/PhysRevSTAB.15.122802
    [9]
    甘本祓, 吴万春. 现代微波滤波器的结构与设计[M]. 北京: 科学出版社, 1973

    Gan Benfu, Wu Wanchun. The structure and design of modern microwave filter[M]. Beijing: Science Press, 1973
    [10]
    Jarry P, Pham J M, Roquebrun O, et al. A new class of dual-mode asymmetric microwave rectangular filter[C]//IEEE International Symposium on Circuits & Systems. Phoenix-Scottsdale: IEEE, 2002.
    [11]
    Chen T S. Characteristics of waveguide resonant-iris filters (correspondence)[J]. IEEE Transactions on Microwave Theory and Techniques, 1967, 15(4): 260-262. doi: 10.1109/TMTT.1967.1126437
    [12]
    徐锐敏, 唐璞, 薛正辉, 等. 微波技术基础[M]. 北京: 科学出版社, 2009

    Xu Ruimin, Tang Pu, Xue Zhenghui, et al. Fundamentals of microwave technology[M]. Beijing: Science Press, 2009
    [13]
    Wang Qian, Wu Y W, Luo Qing, et al. Design and simulation of the waveguide coupler for the cavity beam monitor[C]//9th International Particle Accelerator Conference. 2018: 4932-4935.
    [14]
    崔艳艳. BEPCII直线加速器束团长度监测器研究[D]. 北京: 中国科学院高能物理研究所, 2007

    Cui Yanyan. Studies on bunch length monitor for BEPCII linac[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2007
    [15]
    邹俊颖, 方佳, 孙葆根, 等. Libera Brilliance Single Pass束流位置处理器性能测试[J]. 强激光与粒子束, 2012, 24(12):2893-2896. (Zou Junying, Fang Jia, Sun Baogen, et al. Characterization test of Libera Brilliance Single Pass processor[J]. High Power Laser and Particle Beams, 2012, 24(12): 2893-2896 doi: 10.3788/HPLPB20122412.2893
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article views (784) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return