Volume 34 Issue 3
Jan.  2022
Turn off MathJax
Article Contents
Zhang Chunyao, Zhao Xiaohui, Gao Yanqi, et al. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34: 031012. doi: 10.11884/HPLPB202234.210267
Citation: Zhang Chunyao, Zhao Xiaohui, Gao Yanqi, et al. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34: 031012. doi: 10.11884/HPLPB202234.210267

Near-infrared broadband low-temporal-coherence optical parametric amplification

doi: 10.11884/HPLPB202234.210267
  • Received Date: 2021-07-11
  • Rev Recd Date: 2021-09-17
  • Available Online: 2021-10-08
  • Publish Date: 2022-01-13
  • In the research of the laser-driven inertial confinement nuclear fusion, a low-temporal-coherence light source with broadband and low-coherence characteristics is expected to reduce the instability of the interaction between laser and plasma and to become a strong competitor of a new generation laser driving devices. Realizing high-power low-coherence optical amplification output is the core of whether low-coherence optical drivers can be applied of inertial confinement fusion. Optical parametric amplification has the advantages of large bandwidth, high gain and no thermal effect, etc., which can overcome the spectrum narrowing of the energy-level amplifying medium; it is also an effective solution for realizing broadband low-coherence optical amplification. This paper systematically expounds the principle and technical characteristics of temporally low-coherence optical parametric amplification technology. Carrying out the experiment through near-infrared broadband low-coherent optical cascade parametric amplification process with non-collinear phase match, we reach the final amplification gain of $ 7 \times {10^7} $ and conversion efficiency of 13.19%.
  • loading
  • [1]
    Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
    [2]
    Fujioka S, Takabe H, Yamamoto N, et al. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion[J]. Nature Physics, 2009, 5(11): 821-825. doi: 10.1038/nphys1402
    [3]
    Weber S, Bechet S, Borneis S, et al. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4): 149-176. doi: 10.1016/j.mre.2017.03.003
    [4]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [5]
    Bergh R A, Culshaw B, Cutler C C, et al. Source statistics and the Kerr effect in fiber-optic gyroscopes[J]. Optics Letters, 1982, 7(11): 563-565. doi: 10.1364/OL.7.000563
    [6]
    Bouma B E, Tearney G J. Handbook of optical coherence tomography[M]. New York: Marcel Dekker, 2002: 6.
    [7]
    Picozzi A, Aschieri P. Influence of dispersion on the resonant interaction between three incoherent waves[J]. Physical Review E, 2005, 72: 046606. doi: 10.1103/PhysRevE.72.046606
    [8]
    Picozzi A, Montes C, Haelterman M. Coherence properties of the parametric three-wave interaction driven from an incoherent pump[J]. Physical Review E, 2002, 66: 056605. doi: 10.1103/PhysRevE.66.056605
    [9]
    Dorrer C, Hill E M, Zuegel J D, et al. High-energy parametric amplification of spectrally incoherent broadband pulses[J]. Optics Express, 2020, 28(1): 451-471. doi: 10.1364/OE.28.000451
    [10]
    Dorrer C. Statistical analysis of incoherent pulse shaping[J]. Optics Express, 2009, 17(5): 3341-3352. doi: 10.1364/OE.17.003341
    [11]
    Ji Lailin, Zhao Xiaohui, Liu Dong, et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse[J]. Optics Letters, 2019, 44(17): 4359-4362. doi: 10.1364/OL.44.004359
    [12]
    Arisholm G. Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators[J]. Journal of the Optical Society of America B, 1999, 16(1): 117-127. doi: 10.1364/JOSAB.16.000117
    [13]
    王艳海. 皮秒拍瓦前端OPCPA的工程设计研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2009.

    Wang Yanhai. Engineering design research on OPCPA for the front end of picosecond-petawatt-class lasers[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2009
    [14]
    Hopf F A, Stegeman G I. Applied classical electrodynamics[M]. New York: Wiley, 1986.
    [15]
    王红英. 光学参量啁啾脉冲放大技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2008.

    Wang Hongying. Experimental studies of optical parametric chirped pulse amplification[D]. Xi’an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1772) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return