| Citation: | Xu Duoting, Jin Xin, Wei Xiaoyan, et al. Uncertainty research of fuel rod design verification based on Dakota[J]. High Power Laser and Particle Beams, 2022, 34: 026012. doi: 10.11884/HPLPB202234.210298 |
| [1] |
王璐, 张林, 徐腾, 等. 燃料棒设计关键参数敏感性分析[J]. 应用科技, 2019, 46(6):69-72. (Wang Lu, Zhang Lin, Xu Teng, et al. Sensitivity analysis of key parameters in fuel rod design[J]. Applied Science and Technology, 2019, 46(6): 69-72
|
| [2] |
周勤. 压水堆燃料棒设计参数不确定性研究[J]. 原子能科学技术, 2003, 37(s1):5-9. (Zhou Qin. Research on uncertainty of design parameters for PWR fuel rod[J]. Atomic Energy Science and Technology, 2003, 37(s1): 5-9
|
| [3] |
International Atomic Energy Agency. Best estimate safety analysis for nuclear power plants: uncertainty evaluation[R]. Vienna: International Atomic Energy Agency, 2008.
|
| [4] |
Briggs L L. Uncertainty quantification approaches for advanced reactor analyses[R]. Chicago: Argonne National Laboratory, 2008.
|
| [5] |
Prošek A, Mavko B. The state-of-the-art theory and applications of best-estimate plus uncertainty methods[J]. Nuclear Technology, 2007, 158(1): 69-79. doi: 10.13182/NT07-1
|
| [6] |
陈炼, 房芳芳, 邓程程, 等. 核电站最佳估算安全分析中的不确定度评估方法分析[J]. 原子能科学技术, 2015, 49(7):1237-1242. (Chen Lian, Fang Fangfang, Deng Chengcheng, et al. Analysis on uncertainty evaluation method in best estimate safety analysis of nuclear power plant[J]. Atomic Energy Science and Technology, 2015, 49(7): 1237-1242 doi: 10.7538/yzk.2015.49.07.1237
|
| [7] |
Wensauer A, Distler I, Heins L. Probabilistic uncertainty analysis applied to fuel rod design[M]//Spitzer C, Schmocker U, Dang V N. Probabilistic Safety Assessment and Management. London: Springer, 2004: 2791-2796.
|
| [8] |
Boulore A. Importance of uncertainty quantification in unclear fuel behavior modeling and simulation[C]//Best Estimate Plus Uncertainty International Conference. Lucca, 2018.
|
| [9] |
Bratton R N, Jessee M A, Wieselquist W A, et al. Rod internal pressure distribution and uncertainty analysis using FRAPCON[J]. Nuclear Technology, 2017, 197(1): 47-63. doi: 10.13182/NT16-75
|
| [10] |
Hernandez-Solis A, Ekberg C, Jensen A O, et al. Statistical uncertainty analyses of void fraction predictions using two different sampling strategies: Latin hypercube and simple random sampling[C]//Proceedings of the 18th International Conference on Nuclear Engineering. Xi’an, China: ASNE, 2010: 1059-1068.
|
| [11] |
Ikonen T, Tulkki V. The importance of input interactions in the uncertainty and sensitivity analysis of nuclear fuel behavior[J]. Nuclear Engineering and Design, 2014, 275: 229-241. doi: 10.1016/j.nucengdes.2014.05.015
|
| [12] |
王国栋, 王喆, 扈本学, 等. 应用DAKOTA程序耦合WGOTHIC程序进行安全壳压力响应敏感性分析[J]. 原子能科学技术, 2015, 49(12):2176-2180. (Wang Guodong, Wang Zhe, Hu Benxue, et al. Sensitivity analysis on containment pressure response using coupled DAKOTA and WGOTHIC codes[J]. Atomic Energy Science and Technology, 2015, 49(12): 2176-2180 doi: 10.7538/yzk.2015.49.12.2176
|
| [13] |
Wang J R, Tsai C W, Lin H T, et al. Performing uncertainty analysis of IIST facility SBLOCA by TRACE and DAKOTA[R]. Washington DC: Nuclear Regulatory Commission, 2013.
|
| [14] |
高新力, 靖剑平, 温爽, 等. DAKOTA-RELAP不确定性分析方法在大破口事故中的应用[J]. 核安全, 2016, 15(1):66-70. (Gao Xinli, Jing Jianping, Wen Shuang, et al. Application of DAKOTA-RELAP method in the uncertainty analysis of LB-LOCA[J]. Nuclear Safety, 2016, 15(1): 66-70
|
| [15] |
兰兵, 潘昕怿, 石兴伟, 等. DAKOTA法量化AP1000堆芯物理不确定性[J]. 核电子学与探测技术, 2019, 39(6):668-672. (Lan Bing, Pan Xinyi, Shi Xingwei, et al. Application of DAKOTA method in AP1000 core physics uncertainty quantization[J]. Nuclear Electronics & Detection Technology, 2019, 39(6): 668-672
|
| [16] |
孙山泽. 非参数统计讲义[M]. 北京: 北京大学出版社, 2020: 147-150
Sun Shanze. Nonparametric statistics handout[M]. Beijing: Peking University Press, 2020: 147-150)
|