Volume 34 Issue 2
Jan.  2022
Turn off MathJax
Article Contents
Chen Siyan, Pan Hui, Chen Jun, et al. Analysis and calculation on core neutronics affected by the assembly bowing in pressurized water reactor nuclear power plant[J]. High Power Laser and Particle Beams, 2022, 34: 026014. doi: 10.11884/HPLPB202234.210312
Citation: Chen Siyan, Pan Hui, Chen Jun, et al. Analysis and calculation on core neutronics affected by the assembly bowing in pressurized water reactor nuclear power plant[J]. High Power Laser and Particle Beams, 2022, 34: 026014. doi: 10.11884/HPLPB202234.210312

Analysis and calculation on core neutronics affected by the assembly bowing in pressurized water reactor nuclear power plant

doi: 10.11884/HPLPB202234.210312
  • Received Date: 2021-07-23
  • Accepted Date: 2021-11-16
  • Rev Recd Date: 2021-11-20
  • Available Online: 2021-11-19
  • Publish Date: 2022-01-11
  • In a pressurized water reactor nuclear power plant, the compression force of the fuel assembly, coolant flow, radiation creep, burnup and other factors will cause the bowing of the fuel assembly. The bowing of the fuel assembly affects the distribution of the water gap between the assemblies. It affects the slowing behavior of neutrons and the heat transfer performance of the core, which in turn affects the operating parameters of the reactor core. This paper discusses the cause and mechanism, influence and consequences of assembly bowing (including the influence on core power distribution, core radial power tilt, nuclear enthalpy rise hot channel factor, heat flux hot channel factor and other parameters), and uses Monte Carlo software JMCT to verify the correctness of the calculation program of component bowing PCM. Finally, through the deterministic calculation program, a simulation analysis of the assemblies bowing of the CPR1000 nuclear power plant is carried out. The calculation results show that: at certain fuel consumption, as the water gap increases or decreases, the fuel assembly power will increase or decrease, the power distribution of the core will tilt, affecting the safe operation of nuclear power plants.
  • loading
  • [1]
    Lambert S, Campioni G, Faucher V, et al. Modeling the consequences of fuel assembly bowing on PWR core neutronics using a Monte-Carlo code[J]. Annals of Nuclear Energy, Elsevier Masson, 2019, 134: 330-341. doi: 10.1016/j.anucene.2019.06.017
    [2]
    Wang Y, Chen J, Wei L. A method for calculating the assembly bowing reactivity coefficients in sodium fast reactor[J]. Annals of Nuclear Energy, 2021, 155: 108176. doi: 10.1016/j.anucene.2021.108176
    [3]
    卢皓亮, 陈俊, 王军令, 等. 自主化堆芯核设计软件COCO验证与确认[J]. 原子能科学技术, 2017, 51(8):1459-1463. (Lu Haoliang, Chen Jun, Wang Junling, et al. Verification and validation of self-reliant core nuclear design code COCO[J]. Atomic Energy Science and Technology, 2017, 51(8): 1459-1463 doi: 10.7538/yzk.2017.51.08.1459
    [4]
    李刚, 张宝印, 邓力, 等. 蒙特卡罗粒子输运程序JMCT研制[J]. 强激光与粒子束, 2013, 25(1): 158-162

    Li Gang, Zhang Baoying, Deng Li, et al. Development of Monte Carlo particle transport code JMCT. High Power Laser and Particle Beams, 2013, 25(1): 158-162
    [5]
    李朋洲, 李琦. 压水堆燃料组件研发中的力学问题[J]. 核动力工程, 2015, 36(5):136-139. (Li Pengzhou, Li Qi. Mechanic problems in PWR fuel assembly research and development[J]. Nuclear Power Engineering, 2015, 36(5): 136-139
    [6]
    沈增耀. 压水堆核电厂核岛设计. 总论[M]. 北京: 原子能出版社, 2010: 15-16

    Shen Zengyao. Design of nuclear island for pressurized water reactor nuclear power plant[M]. Beijing: Atomic Energy Press, 2010: 15-16
    [7]
    李伟才, 肖忠. 压水堆燃料组件弯曲变形机理及规避措施[J]. 核动力工程, 2008, 29(2):55-57. (Li Weicai, Xiao Zhong. Mechanism of fuel assembly bowing in PWR and preventive measures[J]. Nuclear Power Engineering, 2008, 29(2): 55-57
    [8]
    Grimm P, Jatuff F, Murphy M. Experimental validation of channel bowing effects on pin power distributions in a Westinghouse SVEA-96+ Assembly[J]. Journal of Nuclear Science and Technology, 2006, 43(3): 223-230. doi: 10.1080/18811248.2006.9711084
    [9]
    Plaschy M, Jatuff F, Grimm P, et al. Comparisons of deterministic neutronic calculations with Monte Carlo results for an advanced BWR fuel assembly with hafnium control blades[J]. Journal of Nuclear Science & Technology, 2006, 43(11): 1298-1310.
    [10]
    王超, 杨铄龑, 彭思涛, 等. 自主PCM核设计软件包的自动化验证[J]. 核动力工程, 2018, 39(S2):46-49. (Wang Chao, Yang Shuoyan, Peng Sitao, et al. Automated validation of CGN nuclear software package PCM[J]. Nuclear Power Engineering, 2018, 39(S2): 46-49
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (1093) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return