Volume 34 Issue 4
Mar.  2022
Turn off MathJax
Article Contents
Wang Ke, Duan Yantao, Shi Lihua, et al. A pulsed magnetic field sensor based on dual-loop differential structure[J]. High Power Laser and Particle Beams, 2022, 34: 043003. doi: 10.11884/HPLPB202234.210337
Citation: Wang Ke, Duan Yantao, Shi Lihua, et al. A pulsed magnetic field sensor based on dual-loop differential structure[J]. High Power Laser and Particle Beams, 2022, 34: 043003. doi: 10.11884/HPLPB202234.210337

A pulsed magnetic field sensor based on dual-loop differential structure

doi: 10.11884/HPLPB202234.210337
  • Received Date: 2021-07-31
  • Accepted Date: 2021-12-08
  • Rev Recd Date: 2021-12-03
  • Available Online: 2021-12-13
  • Publish Date: 2022-03-19
  • Magnetic field measurement in a strong electric field environment such as a lightning strike is one of the difficulties in electromagnetic pulse measurement technology. The traditional shielded small-loop antenna introduces radial asymmetry due to the output end structure, and it is difficult to avoid electric field interference. In response to this, this paper has developed a pulsed magnetic field sensor based on a dual-loop differential structure, which is composed of a dual-loop antenna and an optical transmission system. According to the distribution electromagnetic characteristics of the near-field, the dual-loop antenna chooses to be placed in parallel mirror symmetry, so that the terminal voltage can be divided into the magnetic field response component and the electric field response component, and then the electric field response component is removed by the differential circuit to obtain the pure magnetic field response component. Experiments have shown that in the nearby lightning strike electromagnetic field environment simulator, the dual-loop sensor has stronger anti-interference capability than the single-loop sensor, and can achieve accurate magnetic field measurement.
  • loading
  • [1]
    潘启军, 马伟明, 赵治华, 等. 磁场测量方法的发展及应用[J]. 电工技术学报, 2005, 20(3):7-13. (Pan Qiming, Ma Weiming, Zhao Zhihua, et al. Development and application of measurement method for magnetic field[J]. Transactions of China Electrotechnical Society, 2005, 20(3): 7-13 doi: 10.3321/j.issn:1000-6753.2005.03.002
    [2]
    闫哲, 毕晓亮, 杨嘉祥. 电磁脉冲模拟器电磁场计算[J]. 强激光与粒子束, 2009, 21(2):249-254. (Yan Zhe, Bi Xiaoliang, Yang Jiaxiang. Electromagneitc field calculation of electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2009, 21(2): 249-254
    [3]
    王伟, 石跃武, 聂鑫, 等. 快前沿脉冲磁场测量系统研制[J]. 高电压技术, 2020, 46(6):2209-2218. (Wang Wei, Shi Yuewu, Nie Xin, et al. Development of magnetic field measuring system for fast risetime pulse[J]. High Voltage Engineering, 2020, 46(6): 2209-2218
    [4]
    曹荣刚, 邹军, 袁建生. 脉冲功率电源辐射电磁场测量与分析[J]. 强激光与粒子束, 2009, 21(9):1426-1430. (Cao Ronggang, Zou Jun, Yuan Jiansheng. Measurement and analysis of EMF around pulsed power supplies[J]. High Power Laser and Particle Beams, 2009, 21(9): 1426-1430
    [5]
    Weiss R, Itzke A, Reitenspieß J, et al. A novel closed loop current sensor based on a circular array of magnetic field sensors[J]. IEEE Sensors Journal, 2019, 19(7): 2517-2524. doi: 10.1109/JSEN.2018.2887302
    [6]
    Lenz J, Edelstein S. Magnetic sensors and their applications[J]. IEEE Sensors Journal, 2006, 6(3): 631-649. doi: 10.1109/JSEN.2006.874493
    [7]
    中国电子产品可靠性与环境试验研究所: 差分磁场探头, 201910092916.7[P]. 2019-04-19

    CEPREI: Differential magnetic field probe, 2019-04-19
    [8]
    周璧华, 陈彬, 石立华. 电磁脉冲及其工程防护[M]. 北京: 国防工业出版社, 2003

    Zhou Bihua, Chen Bin, Shi Lihua. EMP and EMP protection. Beijing: National Defense Industry Press, 2003
    [9]
    王莹. 脉冲功率科学与技术[M]. 北京: 北京航空航天大学出版社, 2010

    Wang Ying. Science and technology on pulsed power. Beijing: Beihang University Press, 2010
    [10]
    张海霞, 赵英俊, 杨叔子. 脉冲磁场传感器的理论计算与检测[J]. 仪表技术与传感器, 1997(6):8-11. (Zhang Haixia, Zhao Yingjun, Yang Shuzi. Theoretical calculation and pick-up method of induction magnetic sensors[J]. Instrument Technique and Sensor, 1997(6): 8-11
    [11]
    梁可道, 米彦, 李成祥, 等. ns级脉冲磁场传感器的研制[J]. 高电压技术, 2009, 35(8):1994-1999. (Liang Kedao, Mi Yan, Li Chengxiang, et al. Development of a nanosecond pulsed magnetic field sensor[J]. High Voltage Engineering, 2009, 35(8): 1994-1999
    [12]
    孔旭, 谢彦召. 基于光纤技术的电磁脉冲3维电、磁场测量系统[J]. 高电压技术, 2015, 41(1):339-345. (Kong Xu, Xie Yanzhao. Electric field and magnetic field measuring system for EMP measurement based on fiber technology[J]. High Voltage Engineering, 2015, 41(1): 339-345
    [13]
    李炎新, 石立华, 高成, 等. 用宽带模拟量光纤传输系统测量脉冲电磁场[J]. 高电压技术, 2006, 32(2):34-36. (Li Yanxin, Shi Lihua, Gao Cheng, et al. Measurement of pulse electromagnetic field using wide band fiber optic analogue transmission system[J]. High Voltage Engineering, 2006, 32(2): 34-36 doi: 10.3969/j.issn.1003-6520.2006.02.012
    [14]
    梁猛, 刘崇琪, 杨祎. 光纤通信[M]. 北京: 人民邮电出版社, 2015

    Liang Meng, Liu Congqi, Yang Yi. Optical fiber communications. Beijing: Posts and Telecom Press, 2015
    [15]
    GJB 1389A-2005: 系统电磁兼容性要求[S]

    GJB 1389A-2005: System electromagnetic compatibility requirements[S]
    [16]
    王可, 段艳涛, 石立华, 等. 邻近雷击电场环境模拟装置的设计与实现[J]. 中国舰船研究, 2019, 14(5):119-123. (Wang Ke, Duan Yantao, Shi Lihua, et al. Design and realization of a nearby lightning-electric field environment simulator[J]. Chinese Journal of Ship Research, 2019, 14(5): 119-123
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (611) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return