Volume 34 Issue 4
Mar.  2022
Turn off MathJax
Article Contents
Xiao Jing, Wang Haiyang, Xie Linshen, et al. Adaptability analysis and optimization design of modular Marx generator in mechanical environment[J]. High Power Laser and Particle Beams, 2022, 34: 045001. doi: 10.11884/HPLPB202234.210344
Citation: Xiao Jing, Wang Haiyang, Xie Linshen, et al. Adaptability analysis and optimization design of modular Marx generator in mechanical environment[J]. High Power Laser and Particle Beams, 2022, 34: 045001. doi: 10.11884/HPLPB202234.210344

Adaptability analysis and optimization design of modular Marx generator in mechanical environment

doi: 10.11884/HPLPB202234.210344
  • Received Date: 2021-08-07
  • Rev Recd Date: 2022-01-11
  • Available Online: 2022-02-12
  • Publish Date: 2022-04-15
  • To study the adaptability of the modularized Marx generator in mechanical environment, simulation and vibration experiment of the generator are conducted based on the random vibration theory and finite element analysis method. Firstly, the finite element simulation model of an 8-stage Marx generator is established, and the stress concentration positions are identified. Secondly, the finite element model is corrected according to the initial results of shaking table test. Then an optimization scheme is proposed to modify the Marx generator. As a result, the first-order frequency of the Marx generator is increased from 15.4 Hz to 19.7 Hz. It is helpful to reduce the dynamic response in vertical direction and enhance the mechanical environment adaptability. Results show that more attention should be paid to the reliability in vertical direction when a Marx generator is being designed. The connection of the generator is stable in the vibration experiment, and the stresses mainly concentrate on the corner pieces between the generator and the U-shape support plates, the connections between U-shape support plates and side support plates, and the switch junctions, which are the weak points in design.
  • loading
  • [1]
    Wei Hao, Yin Jiahui, Zhang Pengfei, et al. Development of a 4-MV, 80-kA-induction voltage adder for flash X-ray radiography[J]. IEEE Transactions on Plasma Science, 2019, 47(11): 5030-5036. doi: 10.1109/TPS.2019.2946685
    [2]
    邓明海, 曹宁翔, 马成刚, 等. 200 kV重复频率Marx发生器研制[J]. 强激光与粒子束, 2019, 31:055003. (Deng Minghai, Cao Ningxiang, Ma Chenggang, et al. Development of 200 kV repetitive Marx generator[J]. High Power Laser and Particle Beams, 2019, 31: 055003 doi: 10.11884/HPLPB201931.190369
    [3]
    樊旭亮, 孙旭, 潘亚峰, 等. 基于磁开关的固态近方波Marx发生器初步模拟设计[J]. 现代应用物理, 2018, 9:041201. (Fan Xuliang, Sun Xu, Pan Yafeng, et al. Design of a solid state rectangular pulse Marx generator based on magnetic switch[J]. Modern Applied Physics, 2018, 9: 041201
    [4]
    刘锐, 曾乃工, 王新新. 1.2 MV全封闭Marx发生器的绝缘结构设计[J]. 高电压技术, 2005, 31(4):69-70. (Liu Rui, Zeng Naigong, Wang Xinxin. Insulation design for a 1.2 MV enclosed Marx generator[J]. High Voltage Engineering, 2005, 31(4): 69-70 doi: 10.3969/j.issn.1003-6520.2005.04.026
    [5]
    Elgenedy M A, Massoud A M, Ahmed S, et al. A modular multilevel voltage-boosting Marx pulse-waveform generator for electroporation applications[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10575-10589. doi: 10.1109/TPEL.2019.2899974
    [6]
    宋法伦, 李飞, 龚海涛, 等. 高功率重复频率Marx型脉冲功率源小型化技术研究进展[J]. 强激光与粒子束, 2018, 30:020201. (Song Falun, Li Fei, Gong Haitao, et al. Research progress on miniaturization of high power repetition frequency Marx type pulse power source[J]. High Power Laser and Particle Beams, 2018, 30: 020201 doi: 10.11884/HPLPB201830.170337
    [7]
    贾伟, 陈志强, 郭帆, 等. 典型布局Marx发生器内部过压形成与分布[J]. 华中科技大学学报(自然科学版), 2018, 46(10):110-115. (Jia Wei, Chen Zhiqiang, Guo Fan, et al. Formation mechanism and distribution of internal overvoltage of Marx generator with typical layouts[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2018, 46(10): 110-115
    [8]
    Pouncey J C, Lehr J M, Giri D V. Erection of compact Marx generators[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 2902-2909. doi: 10.1109/TPS.2019.2915034
    [9]
    西北核技术研究所. 一种紧凑型结构的Marx发生器: 103475255A[P]. 2013-12-25

    Northwest Inst Nuclear Tech. Marx generator with compact structure: 103475255A[P]. 2013-12-25
    [10]
    Sharma J K. Theoretical and experimental modal analysis of beam[M]//Ray K, Sharan S, Rawat S, et al. Engineering Vibration, Communication and Information Processing. Singapore: Springer, 2019: 177-186.
    [11]
    瞿金秀, 石长全, 王磊超, 等. 不同老化状态黏弹夹层结构的模态分析[J]. 振动与冲击, 2020, 39(11):69-75. (Qu Jinxiu, Shi Changquan, Wang Leichao, et al. Modal analysis of viscoelastic sandwich structure with different aging states[J]. Journal of Vibration and Shock, 2020, 39(11): 69-75
    [12]
    韩帅, 曹亚文, 邓长华, 等. 液体火箭发动机三轴向虚拟振动试验技术研究[J]. 火箭推进, 2018, 44(6):68-74. (Han Shuai, Cao Yawen, Deng Changhua, et al. Research on test technology for three-axial virtual vibration of liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(6): 68-74 doi: 10.3969/j.issn.1672-9374.2018.06.011
    [13]
    顾乾磊, 张万福, 张尧, 等. 基于微元轨迹的密封动力特性系数理论识别方法[J]. 振动与冲击, 2019, 38(16):22-28. (Gu Qianlei, Zhang Wanfu, Zhang Yao, et al. A theoretical identification method for dynamic coefficients of seals based on infinitesimal trajectory of rotors[J]. Journal of Vibration and Shock, 2019, 38(16): 22-28
    [14]
    李勤建, 高翠琢, 边国辉. 组件的模态分析和随机振动分析[J]. 半导体技术, 2012, 37(10):810-814. (Li Qinjian, Gao Cuizhuo, Bian Guohui. Modal analysis and random vibration analysis on a module[J]. Semiconductor Technology, 2012, 37(10): 810-814 doi: 10.3969/j.issn.1003-353x.2012.10.015
    [15]
    张建斌. 带橡胶减振器的箭载电子设备动力学响应分析研究[D]. 哈尔滨: 哈尔滨工业大学, 2019

    Zhang Jianbin. Research on dynamic response of the electronic equipment with Bubber shock absorber on the rockets[D]. Harbin: Harbin Institute of Technology, 2019
    [16]
    Randall R B, Antoni J, Smith W A. A survey of the application of the cepstrum to structural modal analysis[J]. Mechanical Systems and Signal Processing, 2019, 118: 716-741. doi: 10.1016/j.ymssp.2018.08.059
    [17]
    李星占, 董兴建, 岳晓斌, 等. 振动响应传递率的动力学特性研究及其在工作模态分析中的应用[J]. 振动与冲击, 2019, 38(9):62-70. (Li Xingzhan, Dong Xingjian, Yue Xiaobin, et al. Dynamic characteristics of vibration response transmissibility and its application in operational modal analysis[J]. Journal of Vibration and Shock, 2019, 38(9): 62-70
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views (551) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return