Volume 34 Issue 2
Jan.  2022
Turn off MathJax
Article Contents
Peng Lianghui, Yang Bo, Tang Chuntao, et al. Zero power physics test high fidelity simulation for first core of Guo He One (CAP1400) reactor[J]. High Power Laser and Particle Beams, 2022, 34: 026002. doi: 10.11884/HPLPB202234.210372
Citation: Peng Lianghui, Yang Bo, Tang Chuntao, et al. Zero power physics test high fidelity simulation for first core of Guo He One (CAP1400) reactor[J]. High Power Laser and Particle Beams, 2022, 34: 026002. doi: 10.11884/HPLPB202234.210372

Zero power physics test high fidelity simulation for first core of Guo He One (CAP1400) reactor

doi: 10.11884/HPLPB202234.210372
  • Received Date: 2021-08-27
  • Rev Recd Date: 2021-10-09
  • Available Online: 2021-10-21
  • Publish Date: 2022-01-11
  • To avoid inaccurate predicted values of zero power physics test (ZPPT) parameters, which will affect the commissioning and startup of the nuclear power plant, the numerical reactor can be used to accurately predict the ZPPT parameters. Based on the codes of the CAP1400 numerical reactor system, including the Monte Carlo code JMCT, the deterministic high-fidelity code NECP-X and advanced neutronics code SCAP-N, the CAP1400 first core was modeled to realize high-fidelity simulation of the ZPPT parameters. Numerical results show that the calculation results of the three high-fidelity simulation codes are in good agreement. Taking JMCT as a reference, the absolute deviations of NECP-X and SCAP-N for the gray control bank worth are within ±8×10−5, the relative deviations for the black control bank worth are within ±3%, the relative deviations for the total worth of all the black control banks are within ±1%, and the relative deviations for the assemble relative power are within ±2.5%. The ZPPT parameters of the CAP1400 first core are accurately predicted, which can effectively support the commissioning and startup of the CAP1400 reactor.
  • loading
  • [1]
    邓力, 史敦福, 李刚. 数值反应堆多物理耦合关键技术[J]. 计算物理, 2016, 33(6):631-638. (Deng Li, Shi Dunfu, Li Gang. Key technologies of coupling for multiphysics in numerical reactor[J]. Chinese Journal of Computational Physics, 2016, 33(6): 631-638 doi: 10.3969/j.issn.1001-246X.2016.06.002
    [2]
    Turinsky P J, Kothe D B. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors(CASL)[J]. Journal of Computational Physics, 2016, 313: 367-376. doi: 10.1016/j.jcp.2016.02.043
    [3]
    Leandro A M, Heidet F, Hu R, et al. Thermal hydraulic model of the molten salt reactor experiment with the NEAMS system analysis module[J]. Annals of Nuclear Energy, 2019, 126: 59-67. doi: 10.1016/j.anucene.2018.10.060
    [4]
    Chanaron B. Overview of the NURESAFE European project[J]. Nuclear Engineering and Design, 2017, 321: 1-7. doi: 10.1016/j.nucengdes.2017.09.001
    [5]
    曹良志, 邹晓阳, 刘宙宇, 等. 高保真数值核反应堆不确定度量化方法研究进展[J]. 核动力工程, 2021, 42(2):1-15. (Cao Liangzhi, Zou Xiaoyang, Liu Zhouyu, et al. Research progresses of uncertainty quantification methods for high fidelity numerical nuclear reactor[J]. Nuclear Power Engineering, 2021, 42(2): 1-15
    [6]
    Fausto F. Zero power physics test simulations for the AP1000 PWR[R]. CASL-U-2014-0012-001, 2014.
    [7]
    郑明光, 严锦泉. 大型先进非能动压水堆CAP1400[M]. 上海: 上海交通大学出版社, 2018

    Zheng Mingguang, Yan Jinquan. Large power advanced passive PWR CAP1400 [M]. Shanghai: Shanghai Jiaotong University Press, 2018.
    [8]
    邓力, 李瑞, 丁谦学, 等. 基于JMCT秦山核电厂一期反应堆屏蔽计算与分析[J]. 核动力工程, 2021, 42(2):173-179. (Deng Li, Li Rui, Ding Qianxue, et al. Qinshan-I reactor shielding simulation and sensitivity analysis based on JMCT Monte Carlo code[J]. Nuclear Power Engineering, 2021, 42(2): 173-179
    [9]
    张宝印, 李刚, 邓力, 等. 组合几何Monte Carlo粒子输运支撑软件框架JCOGIN的研发[J]. 原子能科学技术, 2013, 47(S2):448-452. (Zhang Baoyin, Li Gang, Deng Li, et al. Research and development of JCOGIN for Monte Carlo particle transport code[J]. Atomic Energy Science and Technology, 2013, 47(S2): 448-452
    [10]
    Chen Jun, Liu Zhouyu, Zhao Chen, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
    [11]
    张旻婉, 刘宙宇, 温兴坚, 等. 用NECP-X程序计算与分析VERA9#基准题[J]. 现代应用物理, 2021, 12(1):86-91. (Zhang Minwan, Liu Zhouyu, Wen Xingjian, et al. Simulation and analysis of VERA benchmark problem 9# based on NECP-X code[J]. Modern Applied Physics, 2021, 12(1): 86-91
    [12]
    彭良辉, 汤春桃, 杨伟焱. 反应堆堆芯先进中子学模拟软件SCAP-N研发[J]. 核动力工程, 2021, 42(2):213-218. (Peng Lianghui, Tang Chuntao, Yang Weiyan. Development of advanced neutronics code SCAP-N for reactor core high fidelity simulation[J]. Nuclear Power Engineering, 2021, 42(2): 213-218
    [13]
    费敬然, 司胜义, 陈其昌. 燃料棒多物理数值模型研究与程序开发[J]. 核动力工程, 2016, 37(2):7-12. (Fei Jingran, Si Shengyi, Chen Qichang, et al. Research on fuel rod multi-physics numerical modeling and program development[J]. Nuclear Power Engineering, 2016, 37(2): 7-12
    [14]
    Gui Minyang, Tian Wenxi, Wu Di, et al. Development of a two-fluid based thermal-hydraulic subchannel analysis code with high-resolution numerical method[J]. Progress in Nuclear Energy, 2021, 134: 103671. doi: 10.1016/j.pnucene.2021.103671
    [15]
    彭良辉, 陈笑松, 陈耀东, 等. 基于非均匀射线追踪的栅元模块化特征线方法研究[J]. 原子能科学技术, 2018, 52(4):666-671. (Peng Lianghui, Chen Xiaosong, Chen Yaodong, et al. Study on method of characteristics based on cell modular nonuniform ray tracing[J]. Atomic Energy Science and Technology, 2018, 52(4): 666-671 doi: 10.7538/yzk.2017.youxian.0455
    [16]
    彭良辉, 汤春桃, 毕光文, 等. 用于pin-by-pin输运计算的SP3解析基函数展开节块方法研究[J]. 原子能科学技术, 2020, 54(7):1241-1247. (Peng Lianghui, Tang Chuntao, Bi Guangwen, et al. Study on SP3 analytic function expansion nodal method for pin-by-pin transport calculation[J]. Atomic Energy Science and Technology, 2020, 54(7): 1241-1247 doi: 10.7538/yzk.2019.youxian.0472
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views (1651) PDF downloads(152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return