Volume 34 Issue 4
Mar.  2022
Turn off MathJax
Article Contents
Wang Xiaoning, Gao Jie, An Weiming, et al. Predicting relative energy spread in two-bunch plasma wakefield acceleration[J]. High Power Laser and Particle Beams, 2022, 34: 049002. doi: 10.11884/HPLPB202234.210425
Citation: Wang Xiaoning, Gao Jie, An Weiming, et al. Predicting relative energy spread in two-bunch plasma wakefield acceleration[J]. High Power Laser and Particle Beams, 2022, 34: 049002. doi: 10.11884/HPLPB202234.210425

Predicting relative energy spread in two-bunch plasma wakefield acceleration

doi: 10.11884/HPLPB202234.210425
  • Received Date: 2021-10-10
  • Accepted Date: 2022-01-06
  • Rev Recd Date: 2021-12-23
  • Available Online: 2022-01-27
  • Publish Date: 2022-03-19
  • We present a formula to directly obtain the final relative energy spread of a trailing beam at the maximal acceleration distance. The formula works for electron beams in a two-bunch plasma wakefield acceleration stage in the so-called nonlinear bubble regime. It only requires the longitudinal profile of the trailing beam and the longitudinal wakefield within the trailing beam at the beginning of an acceleration. This formula not only works well for drive beams and trailing beams with the same initial energies, but is also available for those beams with different initial energies. We find that the relative energy spread of the trailing beam obtained from the formula is determined by the ratio of the trailing beam’s initial energy to the drive beam’s initial energy rather than the specific value of their initial energies. We perform several computational simulations using the quasi-static particle-in-cell code QuickPIC, and the results agree well with that calculated from the formula.
  • loading
  • [1]
    Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
    [2]
    Chen P, Dawson J M, Huff R W, et al. Acceleration of electrons by the interaction of a bunched electron beam with a plasma[J]. Physical Review Letters, 1985, 54(7): 693-696. doi: 10.1103/PhysRevLett.54.693
    [3]
    Rosenzweig J B, Breizman B, Katsouleas T, et al. Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields[J]. Physical Review A, 1991, 44(10): R6189-R6192. doi: 10.1103/PhysRevA.44.R6189
    [4]
    Lu Wei, Huang Chengkun, Zhou Miaomiao, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Physical Review Letters, 2006, 96: 165002. doi: 10.1103/PhysRevLett.96.165002
    [5]
    Lu Wei, Huang Chengkun, Zhou Miaomiao, et al. A nonlinear theory for multidimensional relativistic plasma wave wakefields[J]. Physics of Plasmas, 2006, 13: 056709. doi: 10.1063/1.2203364
    [6]
    Hogan M J, Assmann R, Decker F J, et al. E-157: a 1.4-m-long plasma wake field acceleration experiment using a 30 GeV electron beam from the Stanford Linear Accelerator Center Linac[J]. Physics of Plasmas, 2000, 7(5): 2241-2248. doi: 10.1063/1.874059
    [7]
    Muggli P, Lee S, Katsouleas T, et al. Collective refraction of a beam of electrons at a plasma-gas interface[J]. Physical Review Special Topics-Accelerators and Beams, 2001, 4: 091301. doi: 10.1103/PhysRevSTAB.4.091301
    [8]
    Clayton C E, Blue B E, Dodd E S, et al. Transverse envelope dynamics of a 28.5-GeV electron beam in a long plasma[J]. Physical Review Letters, 2002, 88: 154801. doi: 10.1103/PhysRevLett.88.154801
    [9]
    Hogan M J, Clayton C E, Huang Chengkun, et al. Ultrarelativistic-positron-beam transport through meter-scale plasmas[J]. Physical Review Letters, 2003, 90: 205002. doi: 10.1103/PhysRevLett.90.205002
    [10]
    Blue B E, Clayton C E, O'Connell C L, et al. Plasma-wakefield acceleration of an intense positron beam[J]. Physical Review Letters, 2003, 90: 214801. doi: 10.1103/PhysRevLett.90.214801
    [11]
    Muggli P, Blue B E, Clayton C E, et al. Meter-scale plasma-wakefield accelerator driven by a matched electron beam[J]. Physical Review Letters, 2004, 93: 014802. doi: 10.1103/PhysRevLett.93.014802
    [12]
    Litos M, Adli E, An Weiming, et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator[J]. Nature, 2014, 515(7525): 92-95. doi: 10.1038/nature13882
    [13]
    Corde S, Adli E, Allen J M, et al. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield[J]. Nature, 2015, 524(7566): 442-445. doi: 10.1038/nature14890
    [14]
    Seryi A, Hogan M, Pei Shilun, et al. A concept of plasma wake field acceleration linear collider (PWFA-LC)[R]. SLAC-PUB-13766, 2009.
    [15]
    Fonseca R A, Silva L O, Tsung F S, et al. OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators[C]//Proceedings of International Conference on Computational Science. Amsterdam: Springer, 2002: 342-351.
    [16]
    Huang Chengkun, Decyk V K, Ren C, et al. QUICKPIC: a highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas[J]. Journal of Computational Physics, 2006, 217(2): 658-679. doi: 10.1016/j.jcp.2006.01.039
    [17]
    An Weiming, Decyk V K, Mori W B, et al. An improved iteration loop for the three dimensional quasi-static particle-in-cell algorithm: QuickPIC[J]. Journal of Computational Physics, 2013, 250: 165-177. doi: 10.1016/j.jcp.2013.05.020
    [18]
    https://gitee.com/bnu-plasma-astrophysics-sg/quick-pic-open-source.git.
    [19]
    Joshi C, Blue B, Clayton C E, et al. High energy density plasma science with an ultrarelativistic electron beam[J]. Physics of Plasmas, 2002, 9(5): 1845-1855. doi: 10.1063/1.1455003
    [20]
    Bane K L F, Chen P, Wilson P B. On collinear wake field acceleration[J]. IEEE Transactions on Nuclear Science, 1985, 32(5): 3524-3526. doi: 10.1109/TNS.1985.4334416
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article views (757) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return