Volume 34 Issue 7
May  2022
Turn off MathJax
Article Contents
Liu Zhigang, Zou Xiaobing, Wang Xinxin. Lagrangian magneto-hydrodynamics simulation for underwater electrical wire explosion[J]. High Power Laser and Particle Beams, 2022, 34: 075002. doi: 10.11884/HPLPB202234.210433
Citation: Liu Zhigang, Zou Xiaobing, Wang Xinxin. Lagrangian magneto-hydrodynamics simulation for underwater electrical wire explosion[J]. High Power Laser and Particle Beams, 2022, 34: 075002. doi: 10.11884/HPLPB202234.210433

Lagrangian magneto-hydrodynamics simulation for underwater electrical wire explosion

doi: 10.11884/HPLPB202234.210433
  • Received Date: 2021-10-14
  • Accepted Date: 2022-01-05
  • Rev Recd Date: 2021-12-22
  • Available Online: 2022-06-15
  • Publish Date: 2022-05-12
  • Based on the Lagrangian description, a single temperature magneto-hydrodynamics model of underwater electrical wire explosion is established, and a high-order mixed finite element method is used to solve this model. For the Lagrangian compressible fluid equations, velocity is discretized using the continuous high-order basis function in the H1 space, and internal energy is discretized using a L2 piecewise discontinuous high-order basis function for the precise capture of the material interface. A tensor artificial viscosity is introduced to suppress the numerical oscillation. Only the azimuthal magnetic flux density is contained in the magnetic diffusion equation, which is simplified to a scalar equation, and is discretized using continuous basis function. Joule heating and Lorenz force are introduced to couple hydrodynamics equations with magnetic field. Numerical results show that the magneto-diffusion solver can solve a multi-material magnetic diffusion problem, and the hydrodynamics solver can track the material interface and shock wave. Underwater electrical wire explosion is simulated based on the magneto-hydrodynamics solver coupled with RLC circuit, including phase transition, shock wave and different discharge modes.
  • loading
  • [1]
    Ben-Dor G. Shock wave reflection phenomena[M]. 2nd ed. Heidelberg: Springer, 2007.
    [2]
    Liu Qiaojue, Ding Weidong, Han Ruoyu, et al. Fracturing effect of electrohydraulic shock waves generated by plasma-ignited energetic materials explosion[J]. IEEE Transactions on Plasma Science, 2017, 45(3): 423-431. doi: 10.1109/TPS.2017.2659761
    [3]
    Takayama K. Application of underwater shock wave focusing to the development of extracorporeal shock wave lithotripsy[J]. Japanese Journal of Applied Physics, 1993, 32(5S): 2192-2198.
    [4]
    Antonov O, Gilburd L, Efimov S, et al. Generation of extreme state of water by spherical wire array underwater electrical explosion[J]. Physics of Plasmas, 2012, 19: 102702. doi: 10.1063/1.4757984
    [5]
    Sheftman D, Krasik Y E. Investigation of electrical conductivity and equations of state of non-ideal plasma through underwater electrical wire explosion[J]. Physics of Plasmas, 2010, 17: 112702. doi: 10.1063/1.3497010
    [6]
    Gurovich V T, Grinenko A, Krasik Y E. Semianalytical solution of the problem of converging shock waves[J]. Physical Review Letters, 2007, 99: 124503. doi: 10.1103/PhysRevLett.99.124503
    [7]
    Grinenko A, Gurovich V T, Krasik Y E, et al. Analysis of shock wave measurements in water by a piezoelectric pressure probe[J]. Review of Scientific Instruments, 2004, 75(1): 240-244. doi: 10.1063/1.1630832
    [8]
    Sayapin A, Grinenko A, Efimov S, et al. Comparison of different methods of measurement of pressure of underwater shock waves generated by electrical discharge[J]. Shock Waves, 2006, 15(2): 73-80. doi: 10.1007/s00193-006-0011-8
    [9]
    Grinenko A, Efimov S, Fedotov A, et al. Addressing the problem of plasma shell formation around an exploding wire in water[J]. Physics of Plasmas, 2006, 13: 052703. doi: 10.1063/1.2202207
    [10]
    Grinenko A, Sayapin A, Gurovich V T, et al. Underwater electrical explosion of a Cu wire[J]. Journal of Applied Physics, 2005, 97: 023303. doi: 10.1063/1.1835562
    [11]
    贾祖朋, 张树道, 蔚喜军. 多介质流体动力学计算方法[M]. 北京: 科学出版社, 2014

    Jia Zupeng, Zhang Shudao, Yu Xijun. Computational method of multi-material hydrodynamics[M]. Beijing: Science Press, 2014
    [12]
    Robinson A C, Brunner T A, Carroll S, et al. ALEGRA: an arbitrary Lagrangian-Eulerian multimaterial, multiphysics code[C]//46th AIAA Aerospace Sciences Meeting & Exhibit. 2008.
    [13]
    Rieben R N, White D A, Wallin B K, et al. An arbitrary Lagrangian-Eulerian discretization of MHD on 3D unstructured grids[J]. Journal of Computational Physics, 2007, 226(1): 534-570. doi: 10.1016/j.jcp.2007.04.031
    [14]
    Oreshkin V I, Chaikovsky S A, Datsko I M, et al. MHD instabilities developing in a conductor exploding in the skin effect mode[J]. Physics of Plasmas, 2016, 23: 122107. doi: 10.1063/1.4971443
    [15]
    Stone J M, Tomida K, White C J, et al. The Athena++ adaptive mesh refinement framework: design and magnetohydrodynamic solvers[J]. The Astrophysical Journal Supplement Series, 2020, 249: 4. doi: 10.3847/1538-4365/ab929b
    [16]
    Stone J M, Norman M L. ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests[J]. Astrophysical Journal, 1992, 80(2): 791-818.
    [17]
    Vaidya B, Mignone A, Bodo G, et al. Astrophysical fluid simulations of thermally ideal gases with non-constant adiabatic index: numerical implementation[J]. Astronomy & Astrophysics, 2015, 580: A110.
    [18]
    Chung K J, Lee K, Hwang Y S, et al. Numerical model for electrical explosion of copper wires in water[J]. Journal of Applied Physics, 2016, 120: 203301. doi: 10.1063/1.4968396
    [19]
    Yin Guofeng, Shi Huantong, Fan Yunfei, et al. Numerical investigation of shock wave characteristics at microsecond underwater electrical explosion of Cu wires[J]. Journal of Physics D:Applied Physics, 2019, 52: 374002. doi: 10.1088/1361-6463/ab2ab5
    [20]
    Anderson R, Andrej J, Barker A, et al. MFEM: a modular finite element methods library[J]. Computers & Mathematics with Applications, 2021, 81: 42-74.
    [21]
    Logg A, Mardal K A, Wells G. Automated solution of differential equations by the finite element method: the FEniCS book[M]. Berlin Heidelberg: Springer, 2012.
    [22]
    Dobrev V A, Ellis T E, Kolev T V, et al. High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics[J]. Computers & Fluids, 2013, 83: 58-69.
    [23]
    Stephens J, Dickens J, Neuber A. Semiempirical wide-range conductivity model with exploding wire verification[J]. Physical Review E, 2014, 89: 053102. doi: 10.1103/PhysRevE.89.053102
    [24]
    Lemmon E W, Huber M L, McLinden M O. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP. 9.0[M]. NIST NSRDS, 2010
    [25]
    Haldemann J, Alibert Y, Mordasini C, et al. AQUA: a collection of H2O equations of state for planetary models[J]. Astronomy & Astrophysics, 2020, 643: A105.
    [26]
    Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C: the art of scientific computing, 2nd ed[J]. IEEE Concurrency, 1993, 6(4): 79.
    [27]
    Akima H. A method of bivariate interpolation and smooth surface fitting based on local procedures[J]. Communications of the ACM, 1974, 17(1): 18-20. doi: 10.1145/360767.360779
    [28]
    Sod G A. A numerical study of a converging cylindrical shock[J]. Journal of Fluid Mechanics, 1977, 83(4): 785-794. doi: 10.1017/S0022112077001463
    [29]
    Tzeferacos P, Fatenejad M, Flocke N, et al. FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments[J]. High Energy Density Physics, 2012, 8(4): 322-328. doi: 10.1016/j.hedp.2012.08.001
    [30]
    Han Ruoyu, Zhou Haibin, Wu Jiawei, et al. Experimental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge[J]. Physics of Plasmas, 2017, 24: 063511. doi: 10.1063/1.4985301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (697) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return