Volume 34 Issue 5
Apr.  2022
Turn off MathJax
Article Contents
Wang Xu, Zhao Ya’nan, Zhao Pengcheng, et al. Asymmetrical operation characteristics of natural circulation lead-bismuth reactor under ocean conditions[J]. High Power Laser and Particle Beams, 2022, 34: 056006. doi: 10.11884/HPLPB202234.210474
Citation: Wang Xu, Zhao Ya’nan, Zhao Pengcheng, et al. Asymmetrical operation characteristics of natural circulation lead-bismuth reactor under ocean conditions[J]. High Power Laser and Particle Beams, 2022, 34: 056006. doi: 10.11884/HPLPB202234.210474

Asymmetrical operation characteristics of natural circulation lead-bismuth reactor under ocean conditions

doi: 10.11884/HPLPB202234.210474
  • Received Date: 2021-11-09
  • Accepted Date: 2022-01-04
  • Rev Recd Date: 2021-12-21
  • Available Online: 2022-01-11
  • Publish Date: 2022-05-15
  • To ensure the vitality of naval nuclear power at all times, the natural cycle lead-bismuth reactor loop will take partial loop operation when it fails under marine conditions. However, there are few studies on the partial loop operation characteristics of lead-bismuth reactor under marine conditions. Based on the secondary development of RELAP5/MOD3.1 program, the off-loop operation characteristics of a 10 MW natural cycle lead-bismuth reactor under typical oceanic conditions are analyzed. The analysis results show that the system parameters of the reactor are less sensitive to the change of tilt angle when the reactor is operating under inclined conditions. Under undulating conditions, the fluctuation of flow rate is reduced by 9% and the outlet temperature is reduced by about 16 K. The larger the undulating amplitude, the more drastic the flow rate fluctuation; the larger the undulating period, the more obvious the flow rate oscillation, but the effect is also weakening. Under rocking conditions, the core flow and outlet temperature are reduced and the reactor introduces higher safety margins. The larger the swing amplitude and the smaller the swing period, the larger the flow fluctuation, and the core outlet temperature is significantly more sensitive to the cycle change than the swing amplitude change.
  • loading
  • [1]
    吴宜灿, 王明煌, 黄群英, 等. 铅基反应堆研究现状与发展前景[J]. 核科学与工程, 2015, 35(2):213-221. (Wu Yican, Wang Minghuang, Huang Qunying, et al. Development status and prospects of lead-based reactors[J]. Nuclear Science and Engineering, 2015, 35(2): 213-221 doi: 10.3969/j.issn.0258-0918.2015.02.004
    [2]
    王泽鸣. VVER-1000偏环运行蒸汽发生器换热特性数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2016

    Wang Zeming. Numerical simulation of steam generator heat transfer characteristics in VVER-1000 asymmetric operation[D]. Harbin: Harbin Institute of Technology, 2016
    [3]
    程建平. 基于CFD的四环路压水堆偏环运行数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2015

    Cheng Jianping. Numerical simulation on four-loop PWR at asymmetric operation conditions based on CFD[D]. Harbin: Harbin Institute of Technology, 2015
    [4]
    王苏豪, 黄善清, 高胜, 等. 液态铅铋实验回路KYLIN-Ⅱ热平衡理论分析研究[J]. 核科学与工程, 2013, 33(4):409-413,428. (Wang Suhao, Huang Shanqing, Gao Sheng, et al. Analysis on heat balance for liquid lead-bismuth experimental loop KYLIN-II[J]. Nuclear Science and Engineering, 2013, 33(4): 409-413,428
    [5]
    Orlova E E, Smirnov V P, Vlasenko A E, et al. Celsist subchannel module aided simulation of liquid-metal coolant flow in experimental FA[J]. Atomic Energy, 2020, 128(2): 71-77. doi: 10.1007/s10512-020-00653-z
    [6]
    Martelli D, Forgione N, Di Piazza I, et al. HLM fuel pin bundle experiments in the CIRCE pool facility[J]. Nuclear Engineering and Design, 2015, 292: 76-86. doi: 10.1016/j.nucengdes.2015.06.004
    [7]
    张家心, 王成龙, 赵寒冰, 等. RELAP5铅铋快堆模型拓展及验证[J]. 原子能科学技术, 2021, 55(7):1260-1267. (Zhang Jiaxin, Wang Chenglong, Zhao Hanbing, et al. RELAP5 modification and verification for lead-bismuth fast reactor[J]. Atomic Energy Science and Technology, 2021, 55(7): 1260-1267
    [8]
    Kumari I, Khanna A. Preliminary validation of RELAP5/Mod4.0 code for LBE cooled NACIE facility[J]. Nuclear Engineering and Design, 2017, 314: 217-226. doi: 10.1016/j.nucengdes.2017.02.004
    [9]
    Angelucci M, Martelli D, Barone G, et al. STH-CFD codes coupled calculations applied to HLM loop and pool systems[J]. Science and Technology of Nuclear Installations, 2017, 2017: 1936894.
    [10]
    Ishida I, Tomiai I. Development of analysis code for thermal hydro-dynamics of marine reactor under multi-dimensional ship motions, RETRAN-02/GRAV[R]. Tokyo: Atomic Energy Research Inst, 1992: 135.
    [11]
    王冰. 海洋条件下核反应堆热工水力分析程序开发[D]. 哈尔滨: 哈尔滨工程大学, 2017

    Wang Bing. The development of a thermal hydraulic analysis code of nuclear reactor under ocean conditions[D]. Harbin: Harbin Engineering University, 2017
    [12]
    谭思超, 高璞珍, 苏光辉. 摇摆运动条件下自然循环复合型脉动的实验研究[J]. 原子能科学技术, 2008, 42(11):1007-1011. (Tan Sichao, Gao Puzhen, Su Guanghui. Experimental research on natural circulation complex oscillations under rolling motion conditions[J]. Atomic Energy Science and Technology, 2008, 42(11): 1007-1011
    [13]
    Murata H, Sawada K I, Kobayashi M. Experimental investigation of natural convection in a core of a marine reactor in rolling motion[J]. Journal of Nuclear Science and Technology, 2000, 37(6): 509-517. doi: 10.1080/18811248.2000.9714924
    [14]
    Ishida T, Yoritsune T. Effects of ship motions on natural circulation of deep sea research reactor DRX[J]. Nuclear Engineering and Design, 2002, 215(1/2): 51-67.
    [15]
    刘志鹏, 王成龙, 张大林, 等. 运动条件下铅铋反应堆热工水力特性研究[J]. 原子能科学技术, 2021, 55(5):811-821. (Liu Zhipeng, Wang Chenglong, Zhang Dalin, et al. Thermal-hydraulic analysis of lead-bismuth reactor under moving condition[J]. Atomic Energy Science and Technology, 2021, 55(5): 811-821
    [16]
    刘佩琪. 摇摆条件下一体化自然循环铅基快堆物理-热工耦合特性初步研究[D]. 衡阳: 南华大学, 2019

    Liu Peiqi. Preliminary study on physical-thermal coupling technology of integrated reactor under rolling conditions[D]. Hengyang: University of South China, 2019
    [17]
    郑云涛. 小型核反应堆非对称运行数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2014

    Zheng Yuntao. A numerical analysis of asymmetric operation on the small nuclear reactors[D]. Harbin: Harbin Engineering University, 2014
    [18]
    Um K S, Ryu S H, Choi Y S, et al. Experimental and computational study of the core inlet temperature pattern under asymmetric loop conditions[J]. Nuclear Technology, 1999, 125(3): 305-315. doi: 10.13182/NT99-A2949
    [19]
    Grudev P, Pavlova M. Simulation of loss-of-flow transient in a VVER-1000 nuclear power plant with RELAP5/MOD3.2[J]. Progress in Nuclear Energy, 2004, 45(1): 1-10. doi: 10.1016/j.pnucene.2004.08.001
    [20]
    Espinoza S, Hugo V, Böttcher M. Investigations of the VVER-1000 coolant transient benchmark phase 1 with the coupled system code RELAP5/PARCS[J]. Progress in Nuclear Energy, 2006, 48(8): 865-879. doi: 10.1016/j.pnucene.2006.06.004
    [21]
    Fazio C, Sobolev V, Aerts A, et al. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[R]. ISBN 978-92-64-99002-9. OECD/NEA, 2015.
    [22]
    The RELAP5-3D Code Development Team. RELAP5-3D code manual volume IV: models and correlations[R]. INEEL-EXT-98-00834.
    [23]
    Borishanskii V M, Gotovskii M A, Firsova É V. Heat transfer to liquid metals in longitudinally wetted bundles of rods[J]. Soviet Atomic Energy, 1969, 27(6): 1347-1350. doi: 10.1007/BF01118660
    [24]
    Rehme K. Pressure drop performance of rod bundles in hexagonal arrangements[J]. International Journal of Heat and Mass Transfer, 1972, 15(12): 2499-2517. doi: 10.1016/0017-9310(72)90143-3
    [25]
    文俊. CiADS铅基反应堆堆芯流量分配设计与优化[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所), 2021

    Wen Jun. Analysis and optimization of flow distribution for the CiADS lead-based reactor core[D]. Lanzhou: University of Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences, 2021
    [26]
    Grishchenko D, Jeltsov M, Kööp K, et al. The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes[J]. Nuclear Engineering and Design, 2015, 290: 144-153. doi: 10.1016/j.nucengdes.2014.11.045
    [27]
    Papukchiev A, Jeltsov M, Kööp K, et al. Comparison of different coupling CFD–STH approaches for pre-test analysis of a TALL-3D experiment[J]. Nuclear Engineering and Design, 2015, 290: 135-143. doi: 10.1016/j.nucengdes.2014.11.008
    [28]
    Kööp K. Application of a system thermal-hydraulics code to development of validation process for coupled STH-CFD codes[D]. ISBN 978-91-7729-727-7 , 2018.
    [29]
    Grishchenko D, Papukchiev A, Liu Chunyu, et al. TALL-3D open and blind benchmark on natural circulation instability[J]. Nuclear Engineering and Design, 2020, 358: 110386. doi: 10.1016/j.nucengdes.2019.110386
    [30]
    王占伟. 摇摆运动下冷却剂低流速流动、传热特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2013

    Wang Zhanwei. The flow and heat transfer characteristics for low flow rate flow under rolling motion conditions[D]. Harbin: Harbin Engineering University, 2013
    [31]
    Ishida I, Kusunoki T, Murata H, et al. Thermal-hydraulic behavior of a marine reactor during oscillations[J]. Nuclear Engineering and Design, 1990, 120(2/3): 213-225.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article views (856) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return