Volume 34 Issue 4
Mar.  2022
Turn off MathJax
Article Contents
Huang Qili, Hu Linlin, Ma Guowu, et al. Design of high power millimeter wave power measurement and calibration system based on calorimetry[J]. High Power Laser and Particle Beams, 2022, 34: 043005. doi: 10.11884/HPLPB202234.210501
Citation: Huang Qili, Hu Linlin, Ma Guowu, et al. Design of high power millimeter wave power measurement and calibration system based on calorimetry[J]. High Power Laser and Particle Beams, 2022, 34: 043005. doi: 10.11884/HPLPB202234.210501

Design of high power millimeter wave power measurement and calibration system based on calorimetry

doi: 10.11884/HPLPB202234.210501
  • Received Date: 2021-11-20
  • Rev Recd Date: 2021-12-23
  • Available Online: 2022-01-06
  • Publish Date: 2022-03-19
  • In the high-power millimeter wave systems of hundreds of kW or MW, the output millimeter wave power is generally measured by calorimetry. According to the needs of power measurement of hundreds of kW long pulse high-power millimeter wave systems, a power measurement system based on calorimetry is designed in this paper. In the proposed design, the incident millimeter wave energy is converted into heat by absorbing load. By monitoring the temperature and flow at the inlet and outlet, the power measurement of high-power millimeter wave is realized, and repeated experiments are carried out. To trace the quantity value and improve the accuracy of the measurement system, the energy standard device is designed, and the system energy measurement error is deduced to calibrate the measurement systems.
  • loading
  • [1]
    Nusinovich G S, Thumm M K A, Petelin M I. The gyrotron at 50: historical overview[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(4): 325-381. doi: 10.1007/s10762-014-0050-7
    [2]
    Sykes A, Gryaznevich M P, Kingham D, et al. Recent advances on the spherical tokamak route to fusion power[J]. IEEE Transactions on Plasma Science, 2014, 42(3): 482-488. doi: 10.1109/TPS.2014.2304569
    [3]
    胡林林, 马国武, 孙迪敏, 等. 28 GHz/50 kW准光输出连续波回旋管[J]. 强激光与粒子束, 2019, 31:060101. (Hu Linlin, Ma Guowu, Sun Dimin, et al. A 28 GHz/50 kW continuous wave gyrotron with quasi-optical output[J]. High Power Laser and Particle Beams, 2019, 31: 060101 doi: 10.11884/HPLPB201931.190139
    [4]
    Xu Weiye, Xu Handong, Liu Fukun, et al. Calorimetric power measurements in the EAST ECRH system[J]. Plasma Science and Technology, 2017, 19: 105602. doi: 10.1088/2058-6272/aa7ec9
    [5]
    Bin W, Bruschi A, Takahashi K, et al. Validation experiments on the 2-MW CW 170-GHz load for the European ITER gyrotron[J]. IEEE Transactions on Plasma Science, 2017, 45(3): 501-511. doi: 10.1109/TPS.2017.2658184
    [6]
    Bin W, Bruschi A, Cirant S, et al. Absorbing coatings for high power millimeter-wave devices and matched loads[J]. Fusion Engineering and Design, 2013, 88(9/10): 2510-2514.
    [7]
    Floristán M, Müller P, Gebhardt A, et al. Development and testing of 140 GHz absorber coatings for the water baffle of W7-X cryopumps[J]. Fusion Engineering and Design, 2011, 86(9/11): 1847-1850.
    [8]
    Ives R L, Mizuhara M, Collins G, et al. Design and operation of a 2 MW CW, RF load for gyrotrons[C]//Proceedings of the 14th International Vacuum Electronics Conference (IVEC). 2013: 1-2.
    [9]
    Ioki K, Hiranai S, Moriyama S, et al. Development of a dummy load and waveguide components for 1 MW CW gyrotron[J]. Fusion Engineering and Design, 2016, 109/111: 951-955. doi: 10.1016/j.fusengdes.2016.01.046
    [10]
    Schmid M, Erckmann V, Gantenbein G, et al. Technical developments at the KIT gyrotron test facility[J]. Fusion Engineering and Design, 2011, 86(6/8): 518-521.
    [11]
    陆志鸿, 易良碧, 白兴宇, 等. HL-2A装置ECRH系统的微波功率测量[J]. 核聚变与等离子体物理, 2008, 28(1):54-59. (Lu Zhihong, Yi Liangbi, Bai Xinyu, et al. Power measurement of microwave for ECRH system on the HL-2A tokamak[J]. Nuclear Fusion and Plasma Physics, 2008, 28(1): 54-59 doi: 10.3969/j.issn.0254-6086.2008.01.011
    [12]
    吴大俊. EAST电子回旋加热高功率毫米波传输关键技术研究[D]. 合肥: 中国科学技术大学, 2019

    Wu Dajun. Research of key technologies of high power millimeter wave transmission on EAST ECRH[D]. Hefei: University of Science and Technology of China, 2019
    [13]
    娄喆飞, 罗积润, 李文奇, 等. 适用于140GHz, 1MW回旋管的水负载反射镜面设计[C]//中国电子学会真空电子学分会第二十一届学术年会论文集. 2018

    Lou Zhefei, Luo Jirun, Li Wenqi, et al. Water loaded mirror design for 140GHz, 1MW Gyrotron[C]//Proceedings of the 21st Annual Academic Conference of Vacuum Electronics Branch of Chinese Institute of Electronics. 2018
    [14]
    王贺, 陆志鸿, 周俊, 等. HL-2A装置ECRH系统传输效率的测量研究[J]. 核聚变与等离子体物理, 2010, 30(3):236-240. (Wang He, Lu Zhihong, Zhou Jun, et al. Transmission efficiency of the ECRH system on HL-2A tokamak[J]. Nuclear Fusion and Plasma Physics, 2010, 30(3): 236-240 doi: 10.3969/j.issn.0254-6086.2010.03.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (705) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return