Volume 34 Issue 8
Jul.  2022
Turn off MathJax
Article Contents
Zhang Bide, Li Wanshun, Wang Bingchuan. Numerical study of atmospheric pressure He plasma jets with dual-channel inlet under different electrode structures[J]. High Power Laser and Particle Beams, 2022, 34: 085003. doi: 10.11884/HPLPB202234.210533
Citation: Zhang Bide, Li Wanshun, Wang Bingchuan. Numerical study of atmospheric pressure He plasma jets with dual-channel inlet under different electrode structures[J]. High Power Laser and Particle Beams, 2022, 34: 085003. doi: 10.11884/HPLPB202234.210533

Numerical study of atmospheric pressure He plasma jets with dual-channel inlet under different electrode structures

doi: 10.11884/HPLPB202234.210533
  • Received Date: 2021-11-29
  • Accepted Date: 2022-06-10
  • Rev Recd Date: 2022-06-01
  • Available Online: 2022-06-15
  • Publish Date: 2022-07-20
  • An atmospheric pressure helium plasma jet with a coaxial dual-channel inlet under single electrode structure (stainless steel needle tube) and double electrode structure (stainless steel needle tube—high voltage ring electrode) is comparatively studied using a two-dimensional axisymmetric fluid model. The study shows that compared with the single electrode structure, the propagation velocity of the jet decreases significantly under the double electrode structure, and decreases more in the dielectric tube. Meanwhile, the spatial structure of the jet changes significantly under the double electrode structure. Under the single electrode structure, the jet structure changes from a donut-shaped hollow structure to a solid disk-shaped structure with its development; while under the double electrode structure, a transformation process from a solid disk-shaped structure to a donut-shaped hollow structure and then to a solid disk-shaped structure is shown, which improves the uniformity of the jet spatial distribution. The effect of high-voltage ring electrode thickness on jet under the double electrode structure is also investigated. It is shown that as the ring electrode thickness increases, the jet propagation velocity decreases further and the jet channel shrinks radially, and the inner diameter of the jet with the donut-shaped hollow structure decreases, which improves the uniformity of the radial distribution of the jet.
  • loading
  • [1]
    Mitić S, Philipps J, Hofmann D. Atmospheric pressure plasma jet for liquid spray treatment[J]. Journal of Physics D: Applied Physics, 2016, 49: 205202. doi: 10.1088/0022-3727/49/20/205202
    [2]
    Jiang Bo, Zheng Jingtang, Qiu Shi, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236: 348-368. doi: 10.1016/j.cej.2013.09.090
    [3]
    Joshi R P, Thagard S M. Streamer-like electrical discharges in water: part II. Environmental applications[J]. Plasma Chemistry and Plasma Processing, 2013, 33(1): 17-49. doi: 10.1007/s11090-013-9436-x
    [4]
    Fanelli F, Fracassi F. Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials[J]. Surface and Coatings Technology, 2017, 322: 174-201. doi: 10.1016/j.surfcoat.2017.05.027
    [5]
    Penkov O V, Khadem M, Lim W S, et al. A review of recent applications of atmospheric pressure plasma jets for materials processing[J]. Journal of Coatings Technology and Research, 2015, 12(2): 225-235. doi: 10.1007/s11998-014-9638-z
    [6]
    Graves D B. Low temperature plasma biomedicine: a tutorial review[J]. Physics of Plasmas, 2014, 21: 080901. doi: 10.1063/1.4892534
    [7]
    Chen Zhitong, Obenchain R, Wirz R E. Tiny cold atmospheric plasma jet for biomedical applications[J]. Processes, 2021, 9: 249. doi: 10.3390/pr9020249
    [8]
    Breden D, Miki K, Raja L L. Self-consistent two-dimensional modeling of cold atmospheric-pressure plasma jets/bullets[J]. Plasma Sources Science and Technology, 2012, 21: 034011. doi: 10.1088/0963-0252/21/3/034011
    [9]
    Li Jing, Guo Heng, Zhang Xiaofei, et al. Numerical and experimental studies on the interactions between the radio-frequency glow discharge plasma jet and the shielding gas at atmosphere[J]. IEEE Transactions on Plasma Science, 2018, 46(8): 2766-2775. doi: 10.1109/TPS.2018.2852945
    [10]
    Lin Peng, Zhang Jiao, Nguyen T, et al. Numerical simulation of an atmospheric pressure plasma jet with coaxial shielding gas[J]. Journal of Physics D: Applied Physics, 2021, 54: 075205. doi: 10.1088/1361-6463/abc2f1
    [11]
    蒋园园, 王艳辉, 高彩慧, 等. 不同电极结构下大气压Ar等离子体射流的流体模拟研究[J]. 强激光与粒子束, 2021, 33:065011. (Jiang Yuanyuan, Wang Yanhui, Gao Caihui, et al. Numerical study of atmospheric pressure Ar plasma jets under different electrode structures[J]. High Power Laser and Particle Beams, 2021, 33: 065011

    Jiang Yuanyuan, Wang Yanhui, Gao Caihui, et al. Numerical study of atmospheric pressure Ar plasma jets under different electrode structures[J]. High Power Laser and Particle Beams, 2021, 33: 065011
    [12]
    Yan Wen, Liu Fucheng, Sang Chaofeng, et al. Two-dimensional numerical study of an atmospheric pressure helium plasma jet with dual-power electrode[J]. Chinese Physics B, 2015, 24: 065203. doi: 10.1088/1674-1056/24/6/065203
    [13]
    Qian Muyang, Ren Chunsheng, Wang Dezhen, et al. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes[J]. Journal of Applied Physics, 2010, 107: 063303. doi: 10.1063/1.3330717
    [14]
    Qian Muyang, Fan Qianqian, Ren Chunsheng, et al. Dual-power electrodes atmospheric pressure argon plasma jet: effect of driving frequency (60-130 kHz) on discharge characteristics[J]. Thin Solid Films, 2012, 521: 265-269. doi: 10.1016/j.tsf.2011.10.154
    [15]
    Li Jinru, Zhang Jiao, Wang Yanhui, et al. Modeling of plasma streamers guided by multi-ring electrodes in atmospheric pressure plasma jets[J]. IEEE Transactions on Plasma Science, 2021, 49(1): 234-243. doi: 10.1109/TPS.2020.3039752
    [16]
    Wang Bingchuan, Li Wanshun, Zhang Bide, et al. Numerical study of discharge characteristics of an atmospheric pressure plasma jet with a coaxial dual-channel inlet[J]. Journal of Applied Physics, 2022, 131: 113303. doi: 10.1063/5.0073577
    [17]
    Babaeva N Y, Kushner M J. Interaction of multiple atmospheric-pressure micro-plasma jets in small arrays: He/O2 into humid air[J]. Plasma Sources Science and Technology, 2014, 23: 015007. doi: 10.1088/0963-0252/23/1/015007
    [18]
    Qian Muyang, Yang Congying, Liu Sanqiu, et al. A computational modeling study on the helium atmospheric pressure plasma needle discharge[J]. Chinese Physics B, 2015, 24: 125202. doi: 10.1088/1674-1056/24/12/125202
    [19]
    Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14: 722-733. doi: 10.1088/0963-0252/14/4/011
    [20]
    Napartovich A P, Dyatko N A, Kochetov I V, et al. [DB/OL]. (2021). www. lxcat. net/TRINITI.
    [21]
    Bourdon A, Darny T, Pechereau F, et al. Numerical and experimental study of the dynamics of a μs helium plasma gun discharge with various amounts of N2 admixture[J]. Plasma Sources Science and Technology, 2016, 25: 035002. doi: 10.1088/0963-0252/25/3/035002
    [22]
    Martens T, Bogaerts A, Brok W J M, et al. The dominant role of impurities in the composition of high pressure noble gas plasmas[J]. Applied Physics Letters, 2008, 92: 041504. doi: 10.1063/1.2839613
    [23]
    COMSOL Multiphysics® v. 5. 4. cn comsol. com. COMSOL AB [CP/DK], Stockholm, Sweden. 2018.
    [24]
    Yue Y, Ma F, Gong W, et al. Radial constraints and the polarity mechanism of plasma plume[J]. Physics of Plasmas, 2018, 25: 103510. doi: 10.1063/1.5052133
    [25]
    Huang Bangdou, Zhang Cheng, Zhu Wenchao, et al. Ionization waves in nanosecond pulsed atmospheric pressure plasma jets in argon[J]. High Voltage, 2021, 6(4): 665-673. doi: 10.1049/hve2.12067
    [26]
    Huang Bangdou, Zhang Cheng, Adamovich I, et al. Surface ionization wave propagation in the nanosecond pulsed surface dielectric barrier discharge: the influence of dielectric material and pulse repetition rate[J]. Plasma Sources Science and Technology, 2020, 29: 044001. doi: 10.1088/1361-6595/ab7854
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (901) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return