| Citation: | Zhang Bide, Li Wanshun, Wang Bingchuan. Numerical study of atmospheric pressure He plasma jets with dual-channel inlet under different electrode structures[J]. High Power Laser and Particle Beams, 2022, 34: 085003. doi: 10.11884/HPLPB202234.210533 |
| [1] |
Mitić S, Philipps J, Hofmann D. Atmospheric pressure plasma jet for liquid spray treatment[J]. Journal of Physics D: Applied Physics, 2016, 49: 205202. doi: 10.1088/0022-3727/49/20/205202
|
| [2] |
Jiang Bo, Zheng Jingtang, Qiu Shi, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236: 348-368. doi: 10.1016/j.cej.2013.09.090
|
| [3] |
Joshi R P, Thagard S M. Streamer-like electrical discharges in water: part II. Environmental applications[J]. Plasma Chemistry and Plasma Processing, 2013, 33(1): 17-49. doi: 10.1007/s11090-013-9436-x
|
| [4] |
Fanelli F, Fracassi F. Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials[J]. Surface and Coatings Technology, 2017, 322: 174-201. doi: 10.1016/j.surfcoat.2017.05.027
|
| [5] |
Penkov O V, Khadem M, Lim W S, et al. A review of recent applications of atmospheric pressure plasma jets for materials processing[J]. Journal of Coatings Technology and Research, 2015, 12(2): 225-235. doi: 10.1007/s11998-014-9638-z
|
| [6] |
Graves D B. Low temperature plasma biomedicine: a tutorial review[J]. Physics of Plasmas, 2014, 21: 080901. doi: 10.1063/1.4892534
|
| [7] |
Chen Zhitong, Obenchain R, Wirz R E. Tiny cold atmospheric plasma jet for biomedical applications[J]. Processes, 2021, 9: 249. doi: 10.3390/pr9020249
|
| [8] |
Breden D, Miki K, Raja L L. Self-consistent two-dimensional modeling of cold atmospheric-pressure plasma jets/bullets[J]. Plasma Sources Science and Technology, 2012, 21: 034011. doi: 10.1088/0963-0252/21/3/034011
|
| [9] |
Li Jing, Guo Heng, Zhang Xiaofei, et al. Numerical and experimental studies on the interactions between the radio-frequency glow discharge plasma jet and the shielding gas at atmosphere[J]. IEEE Transactions on Plasma Science, 2018, 46(8): 2766-2775. doi: 10.1109/TPS.2018.2852945
|
| [10] |
Lin Peng, Zhang Jiao, Nguyen T, et al. Numerical simulation of an atmospheric pressure plasma jet with coaxial shielding gas[J]. Journal of Physics D: Applied Physics, 2021, 54: 075205. doi: 10.1088/1361-6463/abc2f1
|
| [11] |
蒋园园, 王艳辉, 高彩慧, 等. 不同电极结构下大气压Ar等离子体射流的流体模拟研究[J]. 强激光与粒子束, 2021, 33:065011. (Jiang Yuanyuan, Wang Yanhui, Gao Caihui, et al. Numerical study of atmospheric pressure Ar plasma jets under different electrode structures[J]. High Power Laser and Particle Beams, 2021, 33: 065011
Jiang Yuanyuan, Wang Yanhui, Gao Caihui, et al. Numerical study of atmospheric pressure Ar plasma jets under different electrode structures[J]. High Power Laser and Particle Beams, 2021, 33: 065011
|
| [12] |
Yan Wen, Liu Fucheng, Sang Chaofeng, et al. Two-dimensional numerical study of an atmospheric pressure helium plasma jet with dual-power electrode[J]. Chinese Physics B, 2015, 24: 065203. doi: 10.1088/1674-1056/24/6/065203
|
| [13] |
Qian Muyang, Ren Chunsheng, Wang Dezhen, et al. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes[J]. Journal of Applied Physics, 2010, 107: 063303. doi: 10.1063/1.3330717
|
| [14] |
Qian Muyang, Fan Qianqian, Ren Chunsheng, et al. Dual-power electrodes atmospheric pressure argon plasma jet: effect of driving frequency (60-130 kHz) on discharge characteristics[J]. Thin Solid Films, 2012, 521: 265-269. doi: 10.1016/j.tsf.2011.10.154
|
| [15] |
Li Jinru, Zhang Jiao, Wang Yanhui, et al. Modeling of plasma streamers guided by multi-ring electrodes in atmospheric pressure plasma jets[J]. IEEE Transactions on Plasma Science, 2021, 49(1): 234-243. doi: 10.1109/TPS.2020.3039752
|
| [16] |
Wang Bingchuan, Li Wanshun, Zhang Bide, et al. Numerical study of discharge characteristics of an atmospheric pressure plasma jet with a coaxial dual-channel inlet[J]. Journal of Applied Physics, 2022, 131: 113303. doi: 10.1063/5.0073577
|
| [17] |
Babaeva N Y, Kushner M J. Interaction of multiple atmospheric-pressure micro-plasma jets in small arrays: He/O2 into humid air[J]. Plasma Sources Science and Technology, 2014, 23: 015007. doi: 10.1088/0963-0252/23/1/015007
|
| [18] |
Qian Muyang, Yang Congying, Liu Sanqiu, et al. A computational modeling study on the helium atmospheric pressure plasma needle discharge[J]. Chinese Physics B, 2015, 24: 125202. doi: 10.1088/1674-1056/24/12/125202
|
| [19] |
Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14: 722-733. doi: 10.1088/0963-0252/14/4/011
|
| [20] |
Napartovich A P, Dyatko N A, Kochetov I V, et al. [DB/OL]. (2021). www. lxcat. net/TRINITI.
|
| [21] |
Bourdon A, Darny T, Pechereau F, et al. Numerical and experimental study of the dynamics of a μs helium plasma gun discharge with various amounts of N2 admixture[J]. Plasma Sources Science and Technology, 2016, 25: 035002. doi: 10.1088/0963-0252/25/3/035002
|
| [22] |
Martens T, Bogaerts A, Brok W J M, et al. The dominant role of impurities in the composition of high pressure noble gas plasmas[J]. Applied Physics Letters, 2008, 92: 041504. doi: 10.1063/1.2839613
|
| [23] |
COMSOL Multiphysics® v. 5. 4. cn comsol. com. COMSOL AB [CP/DK], Stockholm, Sweden. 2018.
|
| [24] |
Yue Y, Ma F, Gong W, et al. Radial constraints and the polarity mechanism of plasma plume[J]. Physics of Plasmas, 2018, 25: 103510. doi: 10.1063/1.5052133
|
| [25] |
Huang Bangdou, Zhang Cheng, Zhu Wenchao, et al. Ionization waves in nanosecond pulsed atmospheric pressure plasma jets in argon[J]. High Voltage, 2021, 6(4): 665-673. doi: 10.1049/hve2.12067
|
| [26] |
Huang Bangdou, Zhang Cheng, Adamovich I, et al. Surface ionization wave propagation in the nanosecond pulsed surface dielectric barrier discharge: the influence of dielectric material and pulse repetition rate[J]. Plasma Sources Science and Technology, 2020, 29: 044001. doi: 10.1088/1361-6595/ab7854
|