Volume 34 Issue 7
May  2022
Turn off MathJax
Article Contents
Chu Xu, Wang Langning, Zhu Xiaoqing, et al. Research on tunable pulse generation with MHz repetition rate based on compensated 4H-SiC photoconductive semiconductor[J]. High Power Laser and Particle Beams, 2022, 34: 075006. doi: 10.11884/HPLPB202234.210569
Citation: Chu Xu, Wang Langning, Zhu Xiaoqing, et al. Research on tunable pulse generation with MHz repetition rate based on compensated 4H-SiC photoconductive semiconductor[J]. High Power Laser and Particle Beams, 2022, 34: 075006. doi: 10.11884/HPLPB202234.210569

Research on tunable pulse generation with MHz repetition rate based on compensated 4H-SiC photoconductive semiconductor

doi: 10.11884/HPLPB202234.210569
  • Received Date: 2021-12-21
  • Rev Recd Date: 2022-05-18
  • Available Online: 2022-06-15
  • Publish Date: 2022-05-12
  • Agile high repetition rate discharge technology has important applications in improving plasma uniformity. SiC photoconductive semiconductor switch (PCSS) has the advantages of high breakdown field strength, high saturated carrier rate, high radiation resistance, high thermal conductivity and high temperature stability. It is an important solid-state electronic device to produce high repetition rate, high power and short width pulse. Operation characteristics of the MHz repetition frequency sub-nanosecond pulse generator based on vanadium-compensated semi-insulating (VCSI) 4H-SiC PCSS under high electric field are presented in this paper. 1 MHz, 1030 nm laser cluster driver with tunable optical pulse width is used for VCSI 4H-SiC PCSS response test. The 0.8 mm thick 4H-SiC PCSS can work with electric fields up to 200 kV/cm and the electrical power capacity up to 176 kW without failure for long time. The minimum photocurrent pulse width is about 365 ps and the jitter is less than 100 ps.
  • loading
  • [1]
    Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2016.
    [2]
    袁建强, 谢卫平, 周良骥, 等. 光导开关研究进展及其在脉冲功率技术中的应用[J]. 强激光与粒子束, 2008, 20(1):171-176. (Yuan Jianqiang, Xie Weiping, Zhou Liangji, et al. Developments and applications of photoconductive semiconductor switches in pulsed power technology[J]. High Power Laser and Particle Beams, 2008, 20(1): 171-176

    Yuan Jianqiang, Xie Weiping, Zhou Liangji, et al. Developments and applications of photoconductive semiconductor switches in pulsed power technology[J]. High Power Laser and Particle Beams, 2008, 20(1): 171-176
    [3]
    肖龙飞, 徐现刚. 宽禁带碳化硅单晶衬底及器件研究进展[J]. 强激光与粒子束, 2019, 31:040003. (Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003 doi: 10.11884/HPLPB201931.190043

    Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003 doi: 10.11884/HPLPB201931.190043
    [4]
    罗燕, 丁蕾, 赵毅, 等. SiC光导开关衬底与电极界面场强仿真与优化设计[J]. 强激光与粒子束, 2022, 34:063004. (Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004

    Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004
    [5]
    Sullivan J S. Wide bandgap extrinsic photoconductive switches[R]. Livermore: Lawrence Livermore National Lab. , 2013.
    [6]
    Wu Qilin, Xun Tao, Zhao Yuxin, et al. The test of a high-power, semi-insulating, linear-mode, vertical 6H-SiC PCSS[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1837-1842. doi: 10.1109/TED.2019.2901065
    [7]
    Wu Qilin, Zhao Yuxin, Xun Tao, et al. Initial test of optoelectronic high power microwave generation from 6H-SiC photoconductive switch[J]. IEEE Electron Device Letters, 2019, 40(7): 1167-1170. doi: 10.1109/LED.2019.2918954
    [8]
    王朗宁, 荀涛, 杨汉武. 正对电极结构碳化硅光导开关的电路模型[J]. 强激光与粒子束, 2013, 25(9):2471-2476. (Wang Langning, Xun Tao, Yang Hanwu. Circuit modeling of vertical geometry SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(9): 2471-2476 doi: 10.3788/HPLPB20132509.2471

    Wang Langning, Xun Tao, Yang Hanwu. Circuit modeling of vertical geometry SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(9): 2471-2476 doi: 10.3788/HPLPB20132509.2471
    [9]
    Hu Long, Su Jiancang, Qiu Ruicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313. doi: 10.1109/TED.2018.2802642
    [10]
    Wei Wei, Xia Liansheng, Chen Yi, et al. Research on synchronization of 15 parallel high gain photoconductive semiconductor switches triggered by high power pulse laser diodes[J]. Applied Physics Letters, 2015, 106: 022108. doi: 10.1063/1.4906035
    [11]
    Xiao Longfei, Yang Xianglong, Duan Peng, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 2018, 57(11): 2804-2808. doi: 10.1364/AO.57.002804
    [12]
    Chu Xu, Xun Tao, Wang Langning, et al. Breakdown behavior of GaAs PCSS with a backside-light-triggered coplanar electrode structure[J]. Electronics, 2021, 10: 357. doi: 10.3390/electronics10030357
    [13]
    Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5): 256-260. doi: 10.1016/j.mre.2017.12.006
    [14]
    Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561
    [15]
    He Xuan, Zhang Bin, Liu Shuailin, et al. High-power linear-polarization burst-mode all-fibre laser and generation of frequency-adjustable microwave signal[J]. High Power Laser Science and Engineering, 2021, 9: e13. doi: 10.1017/hpl.2021.11
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (767) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return