Volume 34 Issue 5
Apr.  2022
Turn off MathJax
Article Contents
Hu Minglang, Zhou Shihua, Yan Liping, et al. Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method[J]. High Power Laser and Particle Beams, 2022, 34: 053002. doi: 10.11884/HPLPB202234.220026
Citation: Hu Minglang, Zhou Shihua, Yan Liping, et al. Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method[J]. High Power Laser and Particle Beams, 2022, 34: 053002. doi: 10.11884/HPLPB202234.220026

Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method

doi: 10.11884/HPLPB202234.220026
  • Received Date: 2022-01-15
  • Rev Recd Date: 2022-04-07
  • Available Online: 2022-04-13
  • Publish Date: 2022-05-15
  • The power balance (PWB) method is a fast method based on statistical electromagnetics for solving electromagnetic coupling problems in electrically large-sized cavity structures. Based on the PWB method, an electromagnetic coupling solver is developed to solve the electromagnetic coupling level of electrically large-sized cavity structure with different cavity shapes, different aperture shapes and different source types, etc. The validity and efficiency of the solver is validated by comparing its output with the results in the published literature and those of experiments.
  • loading
  • [1]
    张子恒, 田杨萌, 王彩霞. 基于XFDTD的箱变开孔金属外壳雷电电磁脉冲防护[J]. 太赫兹科学与电子信息学报, 2020, 18(5):863-869. (Zhang Ziheng, Tian Yangmeng, Wang Caixia. Lightning electromagnetic pulse protection ability of box-type substation with slots based on XFDTD[J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(5): 863-869 doi: 10.11805/TKYDA2019220
    [2]
    Kubík Z, Skála J. Shielding effectiveness measurement and simulation of small perforated shielding enclosure using FEM[C]//2015 IEEE 15th International Conference on Environment and Electrical Engineering. 2015: 1983-1988.
    [3]
    Ali Khorrami M, Dehkhoda P, Mazandaran R M, et al. Fast shielding effectiveness calculation of metallic enclosures with apertures using a multiresolution method of moments technique[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(1): 230-235. doi: 10.1109/TEMC.2009.2034644
    [4]
    Mrdakovic B L, Kolundzija B M. Accurate analysis of electromagnetic shielding problems using MoM SIE method[C]//2016 International Symposium on Antennas and Propagation. 2016: 162-163.
    [5]
    Lü Qilong, Lv Zhiqing, Xue Zhenhao, et al. Research on shielding effectiveness of spacecraft shielding box to electromagnetic pulse[C]//2020 International Conference on Microwave and Millimeter Wave Technology. 2020: 1-3.
    [6]
    Campione S, Warne L K, Reines I C, et al. Modeling and experiments of high-quality factor cavity shielding effectiveness[C]//2019 International Applied Computational Electromagnetics Society Symposium. 2019: 1-2.
    [7]
    宋航, 胡涛, 侯德亭, 等. 有孔双层屏蔽腔体屏蔽效能的多模分析方法[J]. 微波学报, 2009, 25(2):25-29,82. (Song Hang, Hu Tao, Hou Deting, et al. Shielding effectiveness of double layer rectangular enclosure with apertures over wide frequency range[J]. Journal of Microwaves, 2009, 25(2): 25-29,82
    [8]
    Li Fulin, Han Jihong, Zhang Chang. Study on the influence of PCB parameters on the shielding effectiveness of metal cavity with holes[C]//2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference. 2019: 383-387.
    [9]
    Radivojević M V, Rupčić S, Alilović V, et al. The shielding effectiveness measurements of a rectangular enclosure perforated with slot aperture[C]//2017 International Conference on Smart Systems and Technologies. 2017: 121-126.
    [10]
    Rabat A, Bonnet P, Drissi K E K, et al. Analytical formulation for shielding effectiveness of a lossy enclosure containing apertures[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(5): 1384-1392. doi: 10.1109/TEMC.2017.2764327
    [11]
    Holland R, John R S. Statistical electromagnetics[M]. Boca Raton: CRC Press, 1999.
    [12]
    赵远, 赵翔, 闫丽萍, 等. 开有不同矩形孔缝的电大腔中场分布的统计分析[J]. 四川大学学报(自然科学版), 2014, 51(4):738-744. (Zhao Yuan, Zhao Xiang, Yan Liping, et al. Statistical analysis of EM field distribution in the electrically large enclosure with different rectangle aperture[J]. Journal of Sichuan University (Natural Science Edition), 2014, 51(4): 738-744
    [13]
    罗静雯, 杜平安, 任丹, 等. 基于BLT方程的双层腔体屏蔽效能计算方法[J]. 强激光与粒子束, 2015, 27:113201. (Luo Jingwen, Du Ping’an, Ren Dan, et al. BLT equation-based approach for calculating shielding effectiveness of double layer rectangular enclosures with apertures[J]. High Power Laser and Particle Beams, 2015, 27: 113201 doi: 10.11884/HPLPB201527.113201
    [14]
    公延飞, 郝建红, 蒋璐行, 等. 基于Bethe小孔耦合理论和镜像原理的双腔体电磁泄漏的解析模型[J]. 电工技术学报, 2018, 33(9):2139-2147. (Gong Yanfei, Hao Jianhong, Jiang Luhang, et al. An analytical model for electromagnetic leakage from double cascaded enclosures based on Bethe's small aperture coupling theory and mirror procedure[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2139-2147
    [15]
    王殿海, 石成英, 蔡星会, 等. 有内置薄板腔体的HEMP屏蔽效能研究[J]. 微波学报, 2019, 35(1):87-90. (Wang Dianhai, Shi Chengying, Cai Xinghui, et al. Research on the shielding effectiveness of rectangular cavity with embedded thin plate under HEMP irradiation[J]. Journal of Microwaves, 2019, 35(1): 87-90
    [16]
    Hill D A, Ma M T, Ondrejka A R, et al. Aperture excitation of electrically large, lossy cavities[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(3): 169-178. doi: 10.1109/15.305461
    [17]
    Junqua I, Parmantier J P, Issac F. A network formulation of the power balance method for high-frequency coupling[J]. Electromagnetics, 2005, 25(7/8): 603-622.
    [18]
    赵翔, 张华彬, 刘娟, 等. 基于PWB-EMT的电磁效应评估方法与软件实现[J]. 河北科技大学学报, 2011, 32(S2):165-167. (Zhao Xiang, Zhang Huabin, Liu Juan, et al. Electromagnetic effect evaluation method and software implementation based on PWB-EMT[J]. Journal of Hebei University of Science and Technology, 2011, 32(S2): 165-167
    [19]
    Flintoftid. AEGPWB: an open source electromagnetic power balance toolbox and solver[DB/OL]. [2016-05-18]. https://github.com/flintoftid/aegpwb.
    [20]
    Bremner P G, Bahadorzadeh M, West J C, et al. Statistical field model for performance of localized RF absorption blankets in a payload fairing[C]//2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium. 2021: 136-141.
    [21]
    Pazos J J, Phillips J, Miller E, et al. Estimating fields in spacecraft cavities: experimental validation of finite-difference time-domain and power balance computational tools[C]//2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium. 2021: 798-803.
    [22]
    Junqua I, Parmantier J P, Ridel M. Modeling of high frequency coupling inside oversized structures by asymptotic and PWB methods[C]//2011 International Conference on Electromagnetics in Advanced Applications. 2011: 68-71.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (496) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return