Volume 34 Issue 9
Jun.  2022
Turn off MathJax
Article Contents
Jiang Jinbo, Cao Yu, Luo Zheng, et al. Simulation research on pulse steepening technology based on ferrite transmission line[J]. High Power Laser and Particle Beams, 2022, 34: 095005. doi: 10.11884/HPLPB202234.220092
Citation: Jiang Jinbo, Cao Yu, Luo Zheng, et al. Simulation research on pulse steepening technology based on ferrite transmission line[J]. High Power Laser and Particle Beams, 2022, 34: 095005. doi: 10.11884/HPLPB202234.220092

Simulation research on pulse steepening technology based on ferrite transmission line

doi: 10.11884/HPLPB202234.220092
  • Received Date: 2022-03-30
  • Rev Recd Date: 2022-05-26
  • Available Online: 2022-06-08
  • Publish Date: 2022-06-17
  • The pulse steepening technology of ferrite transmission lines can realize high-frequency and high-power fast front pulse output and has the advantages of solid-state and compactness. It has been widely used in high-power microwave sources. The simulation calculation of pulse steepening characteristics of ferrite transmission lines lacks a more accurate model. Therefore, this paper establishes the simulation model of the ferrite transmission line by using COMSOL simulation software, considering the interaction between electromagnetic wave propagation and magnetic core magnetization precession. The Maxwell equation and Landau-Lifshitz-Gilbert (LLG) equation are combined for simulative calculation. Compared with the experimental results, the accuracy of the simulation model is verified. Based on this model, simultaneous interpreting of the effect of different transmission line lengths, voltage amplitude, and external bias magnetic field on pulse waveform is studied. The results show that the pulse front decreases with the increase of transmission line length and the increase of voltage amplitude; The output of the minimum pulse front can be realized by selecting an appropriate external bias magnetic field.
  • loading
  • [1]
    French D M, Hoff B W. Spatially dispersive ferrite nonlinear transmission line with axial bias[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3387-3390. doi: 10.1109/TPS.2014.2348492
    [2]
    Romanchenko I V, Rostov V V, Gunin A V, et al. High power microwave beam steering based on gyromagnetic nonlinear transmission lines[J]. Journal of Applied Physics, 2015, 117: 214907. doi: 10.1063/1.4922280
    [3]
    Reale D V, Parson J M, Neuber A A, et al. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources[J]. Review of Scientific Instruments, 2016, 87: 034706. doi: 10.1063/1.4942246
    [4]
    Ulmaskulov M R, Mesyats G A, Sadykova A G, et al. Energy compression of nanosecond high-voltage pulses based on two-stage hybrid scheme[J]. Review of Scientific Instruments, 2017, 88: 045106. doi: 10.1063/1.4979641
    [5]
    Katayev I G. Electromagnetic shock waves[M]. London: Iliffe Books Ltd. , 1923.
    [6]
    Pouladian-Kari R, Benson T M, Shapland A J, et al. The electrical simulation of pulse sharpening by dynamic lines[C]//Proceedings of the 7th Pulsed Power Conference. IEEE, 1989.
    [7]
    Dolan J E. Simulation of shock waves in ferrite-loaded coaxial transmission lines with axial bias[J]. Journal of Physics D: Applied Physics, 1999, 32(15): 1826-1831. doi: 10.1088/0022-3727/32/15/310
    [8]
    俞建国. 基于铁氧体传输线的脉冲陡化技术研究[D]. 西安: 西安电子科技大学, 2010: 9-13

    Yu Jianguo. Research of pulse sharpening based on ferrite line[D]. Xi'an: Xidian University, 2010: 9-13
    [9]
    乔中兴, 刘恺, 董寅. 铁氧体同轴传输线脉冲锐化特性的研究[J]. 电工技术学报, 2015, 30(s2):21-25. (Qiao Zhongxing, Liu Kai, Dong Yin. Investigation of ferrite-filled coaxial transmission lines for pulse sharpening[J]. Transactions of China Electrotechnical Society, 2015, 30(s2): 21-25

    Qiao Zhongxing, Liu Kai, Dong Yin. Investigation of ferrite-filled coaxial transmission lines for pulse sharpening[J]. Transactions of China Electrotechnical Society, 2015, 30(s2): 21-25
    [10]
    张兴家, 卢彦雷, 樊亚军, 等. 一种三传输线型亚纳秒脉冲压缩装置[J]. 强激光与粒子束, 2017, 29:115002. (Zhang Xingjia, Lu Yanlei, Fan Yajun, et al. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29: 115002 doi: 10.11884/HPLPB201729.170101

    Zhang Xingjia, Lu Yanlei, Fan Yajun, et al. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29: 115002 doi: 10.11884/HPLPB201729.170101
    [11]
    Tie Weihao, Meng Cui, Zhao Chengguang, et al. Optimized analysis of sharpening characteristics of a compact RF pulse source based on a gyro-magnetic nonlinear transmission line for ultrawideband electromagnetic pulse application[J]. Plasma Science and Technology, 2019, 21: 095503. doi: 10.1088/2058-6272/ab2626
    [12]
    铁维昊, 赵程光, 孟萃, 等. 旋磁型非线性传输线调制脉冲特性数值分析[J]. 高电压技术, 2019, 45(1):301-309. (Tie Weihao, Zhao Chengguang, Meng Cui, et al. Numerical analysis on modulated RF pulse characteristics of gyro-magnetic nonlinear transmission line[J]. High Voltage Engineering, 2019, 45(1): 301-309

    Tie Weihao, Zhao Chengguang, Meng Cui, et al. Numerical analysis on modulated RF pulse characteristics of gyro-magnetic nonlinear transmission line[J]. High Voltage Engineering, 2019, 45(1): 301-309
    [13]
    Greco A F G, Rossi J O, Yamasaki F S, et al. 1D-FDTD simulation of microwave generation using ferrite electromagnetic shock lines[C]//Proceedings of 2020 IEEE Electrical Insulation Conference (EIC). IEEE, 2020.
    [14]
    方旭, 潘亚峰, 丁臻捷, 等. 非线性铁氧体传输线的脉冲陡化作用[J]. 强激光与粒子束, 2014, 26:115006. (Fang Xu, Pan Yafeng, Ding Zhenjie, et al. Pulse sharpening effect of nonlinear ferrite-loaded transmisstion line[J]. High Power Laser and Particle Beams, 2014, 26: 115006 doi: 10.11884/HPLPB201426.115006

    Fang Xu, Pan Yafeng, Ding Zhenjie, et al. Pulse sharpening effect of nonlinear ferrite-loaded transmisstion line[J]. High Power Laser and Particle Beams, 2014, 26: 115006 doi: 10.11884/HPLPB201426.115006
    [15]
    胡月川. 铁磁纳米管中的磁化强度动力学[D]. 天津: 河北工业大学, 2016: 3-9

    Hu Yuechuan. The magnetization dynamics in magnetic nanotubes[D]. Tianjin: Hebei University of Technology, 2016: 3-9
    [16]
    宛德福, 马兴隆. 磁性物理学[M]. 成都: 电子科技大学出版社, 1994: 437-441

    Wan Defu, Ma Xinglong. Magnetic physics[M]. Chengdu: University of Electronic Science and Technology of China Press, 1994: 437-441
    [17]
    Gilbert T L. A phenomenological theory of damping in ferromagnetic materials[J]. IEEE Transactions on Magnetics, 2004, 40(6): 3443-3449. doi: 10.1109/TMAG.2004.836740
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (633) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return