Volume 34 Issue 8
Jul.  2022
Turn off MathJax
Article Contents
Deng Shunyi, Ma Xiao, Fu Hua, et al. Design and application of cooling system in loading area of magnetically driving device[J]. High Power Laser and Particle Beams, 2022, 34: 085001. doi: 10.11884/HPLPB202234.220103
Citation: Deng Shunyi, Ma Xiao, Fu Hua, et al. Design and application of cooling system in loading area of magnetically driving device[J]. High Power Laser and Particle Beams, 2022, 34: 085001. doi: 10.11884/HPLPB202234.220103

Design and application of cooling system in loading area of magnetically driving device

doi: 10.11884/HPLPB202234.220103
  • Received Date: 2022-04-11
  • Rev Recd Date: 2022-06-06
  • Available Online: 2022-06-13
  • Publish Date: 2022-07-20
  • Pressure and temperature are two of the most critical factors in the study of material properties. The magnetically driving device has the ability of pressure regulation, but does not have the sample cooling control technology temporarily in our country. Therefore, a set of cooling system matching with the loading area of the magnetically driving device is designed. Combined with the designed electrode plate structure and the test probe, the electrode plate and the probe in the load area are fixed in the right position. The purpose of cooling the sample is achieved by injecting compressed low-temperature liquid nitrogen into the closed gas chamber formed by the electrode plate and the probe tooling. Through the vacuum pump, the air in the closed air chamber formed by the electrode plate and the probe tooling is extracted to avoid failure of the velocity measuring probe due to the water vapor in the low-temperature condensed air. Based on the system, the ramp wave compression experiment of bismuth at low temperature is carried out, and the dynamic response data of bismuth at the initial temperature of − 80 ℃ are obtained, which verifies the reliability of the cooling system.
  • loading
  • [1]
    Asay J R, Hall C A, Knudson M D. Recent advances in high-pressure equation-of-state capabilities[R]. SAND2000-0849C, 2000.
    [2]
    Barker L M, Hollenbach R E. Shock-wave studies of PMMA, fused silica, and sapphire[J]. Journal of Applied Physics, 1970, 41(10): 4208-4226. doi: 10.1063/1.1658439
    [3]
    Barker L M. High-pressure quasi-isentropic impact experiments[M]//Asay J R, Graham R A, Straub G K. Shock Waves in Condensed Matter-1983. Amsterdam: Elsevier, 1984.
    [4]
    Smith R F, Eggert J H, Saculla M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth[J]. Physical Review Letters, 2008, 101: 065701. doi: 10.1103/PhysRevLett.101.065701
    [5]
    Hall C A, Asay J R, Knudson M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J]. Review of Scientific Instruments, 2001, 72(9): 3587-3595. doi: 10.1063/1.1394178
    [6]
    Ao T, Asay J R, Chantrenne S, et al. A compact strip-line pulsed power generator for isentropic compression experiments[J]. Review of Scientific Instruments, 2008, 79: 013903. doi: 10.1063/1.2827509
    [7]
    Hereil P L, Lassalle F, Avrillaud G. GEPI: an ice generator for dynamic material characterisation and hypervelocity impact[J]. AIP Conference Proceedings, 2004, 706(1): 1209-1212.
    [8]
    夏明鹤, 计策, 王玉娟, 等. PTS装置工作模式及波形调节[J]. 强激光与粒子束, 2012, 24(11):2768-2772. (Xia Minghe, Ji Ce, Wang Yujuan, et al. Operation models and waveform shaping of primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(11): 2768-2772 doi: 10.3788/HPLPB20122411.2768

    Xia Minghe, Ji Ce, Wang Yujuan, et al. Operation models and waveform shaping of primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(11): 2768-2772 doi: 10.3788/HPLPB20122411.2768
    [9]
    Wang Guiji, Sun Chengwei, Tan Fuli, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments[J]. Review of Scientific Instruments, 2008, 79: 053904. doi: 10.1063/1.2920200
    [10]
    Wang Guiji, Luo Binqiang, Zhang Xuping, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading[J]. Review of Scientific Instruments, 2013, 84: 015117. doi: 10.1063/1.4788935
    [11]
    Davis J P, Hayes D B, Asay J R, et al. Investigation of liquid-solid phase transition using isentropic compression experiments (ICE)[J]. AIP Conference Proceedings, 2002, 620(1): 221-224.
    [12]
    Davis J P, Hayes D B. Isentropic compression experiments on dynamic solidification in tin[J]. AIP Conference Proceedings, 2004, 706(1): 163-166.
    [13]
    Hare D E, Forbes J W, Reisman D B, et al. Isentropic compression loading of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) and the pressure-induced phase transition at 27 GPa[J]. Applied Physics Letters, 2004, 85(6): 949-951. doi: 10.1063/1.1771464
    [14]
    Hare D E, Reisman D B, Garcia F, et al. The isentrope of unreacted LX-04 to 170 kbar[J]. AIP Conference Proceedings, 2004, 706(1): 145-148.
    [15]
    Baer M R, Hall C A, Gustavsen R L, et al. Isentropic loading experiments of a plastic bonded explosive and constituents[J]. Journal of Applied Physics, 2007, 101: 034906. doi: 10.1063/1.2399881
    [16]
    种涛, 莫建军, 郑贤旭, 等. 斜波压缩下RDX单晶的动力学特性[J]. 物理学报, 2020, 69:176101. (Chong Tao, Mo Jianjun, Zheng Xianxu, et al. Dynamic behaviors of RDX single crystal under ramp compression[J]. Acta Physica Sinica, 2020, 69: 176101 doi: 10.7498/aps.69.20200318

    Chong Tao, Mo Jianjun, Zheng Xianxu, et al. Dynamic behaviors of RDX single crystal under ramp compression[J]. Acta Physica Sinica, 2020, 69: 176101 doi: 10.7498/aps.69.20200318
    [17]
    Cai J T, Zhao F, Wang G J, et al. Experimental research on elastic-plastic transition and α to γ phase transformation of RDX crystal under ramp loading[C]//Proceedings of the 2015 International Autumn Seminar on Propellants, Explosives and Pyrotechnics. Qingdao, 2015.
    [18]
    种涛, 谭福利, 王桂吉, 等. 磁驱动斜波加载下铋的Ⅰ-Ⅱ-Ⅲ相变实验[J]. 高压物理学报, 2018, 32:051101. (Chong Tao, Tan Fuli, Wang Guiji, et al. Ⅰ-Ⅱ-Ⅲ phase transition of bismuth under magnetically driven ramp wave loading[J]. Chinese Journal of High Pressure Physics, 2018, 32: 051101

    Chong Tao, Tan Fuli, Wang Guiji, et al. Ⅰ-Ⅱ-Ⅲ phase transition of Bismuth under magnetically driven ramp wave loading[J]. Chinese Journal of High Pressure Physics, 2018, 32: 051101
    [19]
    Zhang Qingling. Adsorption mechanism of different coal ranks under variable temperature and pressure conditions[J]. Journal of China University of Mining & Technology, 2008, 18(3): 395-400.
    [20]
    Degheidy A R, Elkenany E B. Mechanical properties of GaxIn1-xAsyP1-y/GaAs system at different temperatures and pressures[J]. Chinese Physics B, 2015, 24: 094302. doi: 10.1088/1674-1056/24/9/094302
    [21]
    Zhou Yongsheng, Jiang Haikun, He Changrong. Experiments of brittle-plastic transition and instability modes of Juyongguan granite at different temperatures and pressures[J]. Earthquake Research in China, 2003, 17(2): 169-182.
    [22]
    Wu Yuxiao, Yang Ruibo, Li Shusuo, et al. Surface recrystallization of a Ni3Al based single crystal superalloy at different annealing temperature and blasting pressure[J]. Rare Metals, 2012, 31(3): 209-214. doi: 10.1007/s12598-012-0493-8
    [23]
    Li Weiguo, Wang Ruzhuan, Li Dingyu, et al. Effect of the cooling medium temperature on the thermal shock resistance of ceramic materials[J]. Materials Letters, 2015, 138: 216-218. doi: 10.1016/j.matlet.2014.09.137
    [24]
    Zhang Xiaoqiang, Gao Huiying, Fu Guozhong, et al. Reliability analysis of filtering reducers considering temperature correction and shock load of space[J]. Journal of Shanghai Jiaotong University (Science), 2018, 23(3): 456-464. doi: 10.1007/s12204-018-1947-4
    [25]
    Lyzenga G A, Ahrens T J, Nellis W J, et al. The temperature of shock-compressed water[J]. The Journal of Chemical Physics, 1982, 76(12): 6282-6286. doi: 10.1063/1.443031
    [26]
    Gurrutxaga-Lerma B, Shehadeh M A, Balint D S, et al. The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron[J]. International Journal of Plasticity, 2017, 96: 135-155. doi: 10.1016/j.ijplas.2017.05.001
    [27]
    Godwal B K, Ng A, Dasilva L. Shock melting and Hugoniot calculations for gold[J]. Physics Letters A, 1990, 144(1): 26-30. doi: 10.1016/0375-9601(90)90042-M
    [28]
    Li Dingyu, Li Weiguo, Wang Ruzhuan, et al. Influence of thermal shock damage on the flexure strength of alumina ceramic at different temperatures[J]. Materials Letters, 2016, 173: 91-94. doi: 10.1016/j.matlet.2016.03.026
    [29]
    Ahn J H, Forster C F. The effect of temperature variations on the performance of mesophilic and thermophilic anaerobic filters treating a simulated papermill wastewater[J]. Process Biochemistry, 2002, 37(6): 589-594. doi: 10.1016/S0032-9592(01)00245-X
    [30]
    Zhang Ningchao, Liu Fusheng, Peng Xiaojian, et al. Light emission properties of sapphire under shock loading in the stress range of 40-120 GPa[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(3): 562-567. doi: 10.1007/s11433-013-5034-4
    [31]
    Fritz J, Wünnemann K, Reimold W U, et al. Shock experiments on quartz targets pre-cooled to 77 K[J]. International Journal of Impact Engineering, 2011, 38(6): 440-445. doi: 10.1016/j.ijimpeng.2010.10.014
    [32]
    Bastea M, Bastea S, Emig J A, et al. Kinetics of propagating phase transformation in compressed bismuth[J]. Physical Review B, 2005, 71: 180101. doi: 10.1103/PhysRevB.71.180101
    [33]
    蔡进涛. 固体炸药的磁驱动准等熵加载实验技术及动力学行为研究[D]. 绵阳: 中国工程物理研究院, 2018

    Cai Jintao. Experimental techniques and dynamic behavior reseaches on solid explosives under magnetically driven quasi-isentropic compression[D]. Mianyang: China Academy of Engineering Physics, 2018
    [34]
    种涛. 斜波加载下铋、锡等典型金属材料的相变动力学研究[D]. 合肥: 中国科学技术大学, 2018

    Chong Tao. Study on kinetics of phase transition of metals under ramp wave loading[D]. Hefei: University of Science and Technology of China, 2018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views (482) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return